The temporal magnetic correlations of the triangular-lattice antiferromagnet NiGa_{2}S_{4} are examined through 13 decades (10^{-13}-1 sec) using ultrahigh-resolution inelastic neutron scattering, muon spin relaxation, and ac and nonlinear susceptibility measurements. Unlike the short-ranged spatial correlations, the temperature dependence of the temporal correlations show distinct anomalies. The spin fluctuation rate decreases precipitously upon cooling towards T^{*}=8.5 K, but fluctuations on the microsecond time scale then persist in an anomalous dynamical regime for 4 K
Download full-text PDF
Source
http://dx.doi.org/10.1103/PhysRevLett.115.127202 DOI Listing Publication Analysis
Top Keywords
Commun Math Phys
January 2025
Centro de Modelamiento Matemático (AFB170001), UMI-CNRS 2807, Universidad de Chile, Beauchef 851, Santiago, Chile.
Our motivation in this paper is twofold. First, we study the geometry of a class of exploration sets, called , which are naturally associated with a 2D vector-valued Gaussian Free Field : . We prove that, somewhat surprisingly, these sets are a.
View Article and Find Full Text PDFNeuroscience
January 2025
Department of Radiology, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China. Electronic address:
Purpose: The neuropathologic mechanisms of sudden sensorineural hearing loss (SSNHL) are unknown. The aim of this study was to investigate the alterations of neurovascular coupling (NVC) in patients with SSNHL and its association with hematologic inflammatory factors.
Methods: The amplitude of low-frequency fluctuations (ALFF), fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo), and degree centrality (DC) were calculated in 48 patients with SSNHL and 54 age-, gender-, and education-matched healthy control (HC), and also utilized the arterial spin labeling imaging (ASL) to calculate cerebral blood flow (CBF).
Adv Mater
January 2025
State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
Large low-field magnetoresistance (LFMR, < 1 T), related to the spin-disorder scattering or spin-polarized tunneling at boundaries of polycrystalline manganates, holds considerable promise for the development of low-power and ultrafast magnetic devices. However, achieving significant LFMR typically necessitates extremely low temperatures due to diminishing spin polarization as temperature rises. To address this challenge, one strategy involves incorporating Ruddlesden-Popper structures (ABO):AO, which are layered derivatives of perovskite structure capable of potentially inducing heightened magnetic fluctuations at higher temperatures.
View Article and Find Full Text PDFNPJ Quantum Mater
January 2025
NIST Center for Neutron Research, Gaithersburg, MD 20899 USA.
The detailed anisotropic dispersion of the low-temperature, low-energy magnetic excitations of the candidate spin-triplet superconductor UTe is revealed using inelastic neutron scattering. The magnetic excitations emerge from the Brillouin zone boundary at the high symmetry and points and disperse along the crystallographic -axis. In applied magnetic fields to at least = 11 T along the , the magnetism is found to be field-independent in the ( 0) plane.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Solid State Physics, TU Wien, 1040, Vienna, Austria.
Waterfalls are anomalies in the angle-resolved photoemission spectrum where the energy-momentum dispersion is almost vertical, and the spectrum strongly smeared out. These anomalies are observed at relatively high energies, among others, in superconducting cuprates and nickelates. The prevalent understanding is that they originate from the coupling to some boson, with spin fluctuations and phonons being the usual suspects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!