Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Breast cancer is the second leading cancer-related disease as the most common non-cutaneous malignancy among women. Curative options for breast cancer are limited, therapeutically substantial and associated with toxicities. Emerging nanotechnologies exhibited the possibility to treat or target breast cancer. Among the nanoparticles, various lipid nanoparticles namely, liposomes, solid lipid nanoparticles, nanostructured lipid carriers and lipid polymer hybrid nanoparticles have been developed over the years for the breast cancer therapy and evidences are documented. Concepts are confined in lab scale, which needs to be transferred to large scale to develop active targeting nanomedicine for the clinical utility. So, the present review highlights the recently published studies in the development of lipid-based nanocarriers for breast cancer treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/10717544.2015.1092183 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!