While hemodynamic forces and intraluminal thrombus (ILT) are believed to play important roles on abdominal aortic aneurysm (AAA), it has been suggested that hemodynamic forces and ILT also interact with each other, making it a complex problem. There is, however, a pressing need to understand relationships among three factors: hemodynamics, ILT accumulation, and AAA expansion for AAA prognosis. Hence this study used longitudinal computer tomography scans from 14 patients and analyzed the relationship between them. Hemodynamic forces, represented by wall shear stress (WSS), were obtained from computational fluid dynamics; ILT accumulation was described by ILT thickness distribution changes between consecutives scans, and ILT accumulation and AAA expansion rates were estimated from changes in ILT and AAA volume. Results showed that, while low WSS was observed at regions where ILT accumulated, the rate at which ILT accumulated occurred at the same rate as the aneurysm expansion. Comparison between AAAs with and without thrombus showed that aneurysm with ILT recorded lower values of WSS and higher values of AAA expansion than those without thrombus. Findings suggest that low WSS may promote ILT accumulation and submit the idea that by increasing WSS levels ILT accumulation may be prevented.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4826625 | PMC |
http://dx.doi.org/10.1007/s10439-015-1461-x | DOI Listing |
Materials (Basel)
October 2022
RWTH Aachen University-Digital Additive Production (DAP), D-52074 Aachen, Germany.
In order to track the free interface of the melt pool and understand the evolution of the melt pool, the flow of fluid, and the interface behavior of gas and liquid, a physical model is developed by using the VOF method in this paper. Its characteristics are a combined heat source model, including a parabolic rotation and a cylindrical distribution, and a powder bed stochastic distributed model with powder particle size. The unit interface between the metallic and gas phase in the laser-powder interaction zone can only be loaded by the heat source.
View Article and Find Full Text PDFPrediction of abdominal aortic aneurysm (AAA) growth is of essential importance for the early treatment and surgical intervention of AAA. Capturing key features of vascular growth, such as blood flow and intraluminal thrombus (ILT) accumulation play a crucial role in uncovering the intricated mechanism of vascular adaptation, which can ultimately enhance AAA growth prediction capabilities. However, local correlations between hemodynamic metrics, biological and morphological characteristics, and AAA growth rates present high inter-patient variability that results in that the temporal-spatial biochemical and mechanical processes are still not fully understood.
View Article and Find Full Text PDFBiomolecules
February 2022
Department of Laboratory Diagnostics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
An intraluminal thrombus (ILT), which accumulates large numbers of neutrophils, plays a key role in abdominal aortic aneurysm (AAA) pathogenesis. This study aimed to compare levels of selected neutrophil inflammatory mediators in thick and thin ILT, plus adjacent AAA walls, to determine whether levels depend on ILT thickness. Neutrophil mediator levels were analysed by enzyme-linked immunosorbent assays in thick and thin segments of ILT, plus adjacent aneurysm wall sections, taken from one aneurysm sac each from 36 AAA patients.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
February 2022
Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA.
The intraluminal thrombus (ILT) has been shown to negatively impact the progression of the abdominal aortic aneurysms (AAAs). The formation of this thrombus layer has been connected to the local flow environment within AAAs, but the specific mechanisms leading to thrombus formation are still not fully understood. Our study investigated the association between vortical structures, near-wall hemodynamic metrics (e.
View Article and Find Full Text PDFComput Methods Programs Biomed
October 2021
Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany. Electronic address:
Background And Objective: Magnetic drug targeting (MDT) is a promising technology to improve cancer therapy. MDT describes the accumulation of drug loaded superparamagnetic iron oxide nanoparticles (SPIONs) at a desired location, e. g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!