Objective: Brain stroke is the third most important cause of death in developed countries. We studied the effect of different dietary lipids on the outcome of a permanent ischemic stroke rat model.
Methods: Wistar rats were fed diets containing 7% commercial oils (S, soybean; O, olive; C, coconut; G, grape seed) for 35 d. Stroke was induced by permanent middle cerebral artery occlusion. Coronal slices from ischemic brains and sham-operated animals were supravitally stained. Penumbra and core volumes were calculated by image digitalization after 24, 48, and 72 h poststroke. Homogenates and mitochondrial fractions were prepared from different zones and analyzed by redox status, inflammatory markers, ceramide, and arachidonate content, phospholipase A2, NOS, and proteases.
Results: Soybean (S) and G diets were mainly prooxidative and proinflammatory by increasing the liberation of arachidonate and its transformation into prostaglandins. O was protective in terms of redox homeostatic balance, minor increases in lipid and protein damage, conservation of reduced glutathione, protective activation of NOS in penumbra, and net ratio of anti-to proinflammatory cytokines. Apoptosis (caspase-3, milli- and microcalpains) was less activated by O than by any other diet.
Conclusion: Dietary lipids modulate NOS and PLA2 activities, ceramide production, and glutathione import into the mitochondrial matrix, finally determining the activation of the two main protease systems involved in programmed cell death. Olive oil appears to be a biological source for the isolation of protective agents that block the expansion of brain core at the expense of penumbral neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nut.2015.05.023 | DOI Listing |
J Vis Exp
January 2025
Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University;
Stroke is a leading cause of death and disability worldwide. Most cases of stroke are ischemic and result from the occlusion of the middle cerebral artery (MCA). Current pharmacological approaches for the treatment of ischemic stroke are limited; therefore, novel therapies providing effective neuroprotection against ischemic injury following stroke are urgently needed.
View Article and Find Full Text PDFObjectives: To observe the effect of eye-acupuncture on the antioxidant function axis:System xc(-)-glutathione-glutathione peroxidase 4 (System xc[-]-GSH-GPX4) in the cortical tissue of ischemic penumbra of acute cerebral ischemia-reperfusion injury (CIRI) rats, so as to explore its underlying mechanism in improvement of CIRI by ameliorating the ferroptosis of neurons via antioxidant function axis.
Methods: Male SD rats were randomly divided into sham operation, model, eye-acupuncture and GPX4-inhibitor groups, with 15 rats in each group. The CIRI model was replicated by occlusion of the middle cerebral artery and reperfusion for 24 h.
Biochem Pharmacol
December 2024
School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming 650500, China. Electronic address:
Our previous study demonstrated that Berberine (BBR) significantly enhances autophagic flux, alleviating ischemic neuronal injury by restoring autolysosomal function, but how BBR augmented autolysosomal functions remained elusive. N-ethyl-maleimide sensitive factor (NSF) is considered as a major ATPase to reactivate soluble NSF attachment protein receptors (SNAREs), which directly mediate autophagosome-lysosome fusion. However, NSF was dramatically inactivated by ischemia to hamper membrane-membrane fusion, leading to autophagic/lysosomal dysfunction in neurons.
View Article and Find Full Text PDFFront Cell Neurosci
November 2024
TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain.
Ischemic stroke consists of rapid neural death as a consequence of brain vessel obstruction, followed by damage to the neighboring tissue known as ischemic penumbra. The cerebral tissue in the core of the lesions becomes irreversibly damaged, however, the ischemic penumbra is potentially recoverable during the initial phases after the stroke. Therefore, there is real need for emerging therapeutic strategies to reduce ischemic damage and its spread to the penumbral region.
View Article and Find Full Text PDFCNS Neurosci Ther
October 2024
Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Aims: Dopamine transporter (DAT) can regulate DA homeostasis and has been implicated in many nervous system diseases. Whether DAT is involved in the protection against ischemic stroke is unclear.
Methods: In vivo microdialysis measurements of DA were recorded in the ischemic penumbral area of mice with middle cerebral artery occlusion (MCAO).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!