Background: Large animal veterinarians carry drugs in their practice vehicles in storage areas that are not typically refrigerated. The most common upper limits of manufacturers' storage temperatures for United States (U.S.)-approved non-refrigerated drugs are 25 or 30 °C. Because ambient temperatures in many locations in the U.S. exceed these temperatures during the summer, we measured storage area temperatures over 4 months in the summer of 2013 to evaluate the extent to which labeled storage temperatures are exceeded.
Methods: A convenience sample of 12 vehicles from 5 central Texas practices and 12 vehicles from 4 south central Nebraska practices was used. Temperatures were recorded in one drug storage compartment in each vehicle from May 15 - September 16, 2013, at 15-minute intervals using a self-contained, battery operated temperature recording device.
Results: The highest temperatures recorded in a storage unit were 54.4 and 47.7 °C in Texas and Nebraska, respectively. The mean temperature recorded across all 24 storage units was 29.1 °C, with a mean of 26.9 °C in Nebraska and 31.4 °C in Texas. In Nebraska, at least one temperature over 25 °C was recorded on a mean of 111/124 days and a mean of 63 % of total logger readings. In Texas, temperatures over 25 °C were recorded on a mean of 123/124 days and a mean of 95 % of total logger readings.
Conclusions: Temperatures in storage units in participating veterinary practice vehicles exceeded labeled drug storage temperatures a significant portion of the summer of 2013. More research is needed to determine whether these excursions above the manufacturers' recommended storage temperatures alter efficacy of stored drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4590276 | PMC |
http://dx.doi.org/10.1186/s12917-015-0561-z | DOI Listing |
Sci Rep
January 2025
School of Earth and Ocean Sciences, University of Victoria, PO Box 1700, Victoria, BC, V8W 2Y2, Canada.
Reaching net zero emissions and limiting global warming to 2 °C requires the widespread introduction of technology-based solutions to draw down existing atmospheric levels and future emissions of CO. One such approach is direct air CO capture and storage (DACCS), a readily available, yet energy-intensive process. The combination of DACCS and ocean thermal energy conversion (OTEC) allows for independently powered carbon capture plants to inject concentrated carbon into deep marine sediments where storage is generally safe and permanent.
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China. Electronic address:
Carbonic anhydrases (CAs) has garnered increasing attention in carbon capture, utilization and storage (CCUS) due to their ecological friendliness. However, most of them suffer susceptibility to deactivation in harsh conditions. Herein, a reliable dataset was adopted for creating ancestral CAs through an optimized ancestral sequence reconstruction (ASR) method.
View Article and Find Full Text PDFACS Macro Lett
January 2025
Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
As a special kind of supramolecular compound with many favorable properties, pillar[]arene-based supramolecular polymer networks (SPNs) show potential application in many fields. Although we have come a long way using pillar[]arene to prepare SPNs and construct a series of smart materials, it remains a challenge to enhance the mechanical strength of pillar[]arene-based SPNs. To address this issue, a new supramolecular regulation strategy was developed, which could precisely control the preparation of pillar[]arene-based SPN materials with excellent mechanical properties by adjusting the polymer network structures.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
A novel polymer electrolyte based on CsPbI quantum dots (QDs) reinforced polyacrylonitrile (PAN), named as PIL, is exploited to address the low room-temperature (RT) ion conductivity and poor interfacial compatibility of polymer solid-state electrolytes. After optimizing the content of CsPbI QDs, RT ion conductivity of PIL largely increased from 0.077 to 0.
View Article and Find Full Text PDFFoods
January 2025
Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia.
This research aimed to evaluate the use of edible coating from a combination of liquid smoke and turmeric extract as a preservative for mackerel at room temperature. Liquid smoke was obtained from the pyrolysis of oil palm empty fruit bunches (OPEFB) at a temperature of 380 °C and purified by distillation at 190 °C. Liquid smoke with a concentration of 3% was combined with turmeric extract at a ratio of 2, 4, 6, and 8 g/L (CLS 2:1, CLS 4:1, CLS 6:1 and CLS 8:1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!