Impact of laser phase and amplitude noises on streak camera temporal resolution.

Rev Sci Instrum

Optronis GmbH, Ludwigstrasse 2, 77694 Kehl, Germany.

Published: September 2015

Streak cameras are now reaching sub-picosecond temporal resolution. In cumulative acquisition mode, this resolution does not entirely rely on the electronic or the vacuum tube performances but also on the light source characteristics. The light source, usually an actively mode-locked laser, is affected by phase and amplitude noises. In this paper, the theoretical effects of such noises on the synchronization of the streak system are studied in synchroscan and triggered modes. More precisely, the contribution of band-pass filters, delays, and time walk is ascertained. Methods to compute the resulting synchronization jitter are depicted. The results are verified by measurement with a streak camera combined with a Ti:Al2O3 solid state laser oscillator and also a fiber oscillator.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4930122DOI Listing

Publication Analysis

Top Keywords

laser phase
8
phase amplitude
8
amplitude noises
8
streak camera
8
temporal resolution
8
light source
8
impact laser
4
streak
4
noises streak
4
camera temporal
4

Similar Publications

Phase transitions in the mantle control its internal dynamics and structure. The post-spinel transition marks the upper-lower mantle boundary, where ringwoodite dissociates into bridgmanite plus ferropericlase, and its Clapeyron slope regulates mantle flow across it. This interaction has previously been assumed to have no lateral spatial variations, based on the assumption of a linear post-spinel boundary in pressure and temperature.

View Article and Find Full Text PDF

Purpose: This research aimed to develop and assess a Lipiodol Pickering emulsion containing anti-Programmed cell Death Ligand 1 (PD-L1) antibodies through in vitro experiments.

Materials And Methods: The emulsion was created by combining Lipiodol with poly (lactic-co-glycolic acid) (PLGA) nanoparticles and anti-PD-L1 antibodies. Confocal laser microscopy was used to evaluate the encapsulation of the antibodies within the Pickering emulsion.

View Article and Find Full Text PDF

Fiber Bragg gratings (FBGs) inscribed by UV light and different femtosecond laser techniques (phase mask, point-by-point, and plane-by-plane) were exposed-in several irradiation cycles-to accumulated high doses of gamma rays (up to 124 MGy) and neutron fluence (8.7 × 10/cm) in a research-grade nuclear reactor. The FBG peak wavelengths were measured continuously in order to monitor radiation-induced shifts.

View Article and Find Full Text PDF

Effect of Gradient Transition Layer on the Cracking Behavior of Ni60B (NiCrBSi) Coatings by Laser Cladding.

Materials (Basel)

January 2025

State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China.

Laser cladding technology is an effective method for producing wear-resistant coatings on damaged substrates, improving both wear and corrosion resistance, which extends the service life of components. However, the fabrication of hard and brittle materials is highly susceptible to the problem of cracking. Using gradient transition layers is an effective strategy to mitigate the challenge of achieving crack-free laser-melted wear-resistant coatings.

View Article and Find Full Text PDF

Laser powder bed fusion (LPBF)-fabricated Ni-based alloys with high γ' phase fractions generally suffer from cracking that limits their applications. This study presents SD247, a novel alloy that overcomes the challenge of cracking issues and exhibits superior mechanical properties after heat treatment. Compared to CM247LC, SD247 exhibited a lower cracking tendency due to alloying element modification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!