The 3-substituted oxindole derivatives were designed, synthesized, and evaluated for antidepressant activity by employing forced swimming test, tail suspension test, and MAO-A inhibition assay. Results of biological studies revealed that the majority of compounds exhibited potent to moderately potent activity and among them, 12 displayed potency comparable to that of the imipramine with %DID of 37.95 and 44.84 in the FST and TST, respectively. At the same time, imipramine showed %DID of 43.62 and 50.64 in the FST and TST, correspondingly. In the MAO-A inhibition assay, 12 showed an IC50 of 18.27 μmol, whereas the reference drug moclobemide displayed an IC50 of 13.1 μmol. The SAR study disclosed that the presence of bromo atom at the phenyl/furanyl or thienyl moiety in the oxindole derivatives was critical for the antidepressant activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2015.09.048 | DOI Listing |
Chem Pharm Bull (Tokyo)
January 2025
Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
Density functional theory calculations on the cyclization of di-t-butyl 2-(2-aminophenyl)-2-methyl malonate (1) to t-butyl 3-methyloxindole-3-carboxylate (2) reveal that acetic acid-assisted protonation of the carbonyl oxygen atom reduces the activation Gibbs free energy significantly lower than methanol-assisted pathways. Experimental data confirm that reaction concentration plays a pivotal role in oxindole formation. Experimental results also indicate distinct reaction mechanisms at low and high concentrations.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China.
The absolute and relative configurations of bioactive chiral molecules are typically relevant to their biological properties. It is thus highly important and desirable to construct all possible stereoisomers of a lead candidate or a given bioactive natural compound. Synergistic dual catalysis has been recognized as a reliable synthetic strategy for a variety of predictable stereodivergent transformations.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry, Memorial University, St. John's, Newfoundland and Labrador A1B 3X7, Canada.
Organocatalytic, enantioselective decarboxylative Mannich reactions of α,β-unsaturated β'-ketoacids and isatin -Boc imines, to give the corresponding 3-carbamoyl-2-oxindole derivatives, were developed. Subsequent N-deprotection and diastereoselective, intramolecular, aza-Michael reaction of the free amine provides previously unreported spiro[indoline-3,2'-piperidine]-2,4'-diones.
View Article and Find Full Text PDFChem Biol Interact
January 2025
College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea. Electronic address:
Prostate cancer, the second leading cause of cancer-related mortality in men, exhibits distinct metabolic reprogramming involving zinc and citrate metabolism. This study investigated whether targeting this unique metabolic profile could offer an effective therapeutic approach. A series of novel oxindole derivatives were synthesized and evaluated for their inhibitory effects on transcription factors (TFs) and antiproliferative activity across various cancer cell lines.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemistry, Middle East Technical University, 06800 Ankara, Türkiye.
This work describes the development of the first enantioselective addition reaction between 1,3,5,7-tetramethyl-BODIPYs and isatin derivatives. The reaction utilizes bifunctional quinine/squaramide organocatalysts and affords nine novel chiral BODIPY dyes under mild conditions, with enantioselectivities reaching up to 60%. The synthesized BODIPY-oxindoles exhibit high fluorescence emissions, consistent with their parent BODIPYs, and display tunable colors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!