SsoPox, a ~35 kDa enzyme from Sulfolobus solfataricus, can hydrolyze and inactivate a variety of organophosphate (OP)-compounds. The enzyme is a potential candidate for the development of prophylactic and therapeutic agent against OP-poisoning in humans. However, the therapeutic use of recombinant SsoPox suffers from certain limitations associated with the use of recombinant protein pharmaceuticals. Some of these limitations could be overcome by conjugating SsoPox enzyme with polyethylene glycol (PEG). In this study, we report generation and in vitro characterization of N-terminal mono-PEGylated rSsoPox(2p) (a variant of rSsoPox(wt) having enhanced OP-hydrolyzing activity). The enzyme was PEGylated with mPEG-propionaldehyde and the PEGylated protein was isolated using ion-exchange chromatography. Compared with the unmodified enzyme, mono-PEGylation of rSsoPox results in improvement in the thermostability and protease resistance of the enzyme. PEGylated rSsoPox(2p) can be developed as a candidate for the prevention / treatment of OP-poisoning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0929866522666151002122751 | DOI Listing |
Int J Mol Sci
March 2020
Institute of Biochemistry and Cell Biology, CNR, 80131 Naples, Italy.
Increasing attention is more and more directed toward the thermostable Phosphotriesterase-Like-Lactonase (PLL) family of enzymes, for the efficient and reliable decontamination of toxic nerve agents. In the present study, the DNA Staggered Extension Process (StEP) technique was utilized to obtain new variants of PLL enzymes. Divergent homologous genes encoding PLL enzymes were utilized as templates for gene recombination and yielded a new variant of SsoPox from .
View Article and Find Full Text PDFBMC Biotechnol
March 2018
Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania "Luigi Vanvitelli"-ex Second University of Naples, Naples, Italy.
Background: Thermostable phosphotriesterase-like lactonases (PLLs) are able to degrade organophosphates and could be potentially employed as bioremediation tools and bioscavengers. But nowadays their manufacturing in high yields is still an issue that limits their industrial applications. In this work we aimed to set up a high yield production and purification biotechnological process of two recombinant PLLs expressed in E.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
March 2017
Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, Second University of Naples, Naples, Italy.
Thermostable phosphotriesterase-like lactonases (PLLs) from extremophile archaea, like SsoPox from Sulfolobus solfataricus, are attractive biotechnological tools with industrial applications as organophosphate decontaminants, but their manufacturing still remains an unresolved issue because of the high costs and the low production yields. In this paper, for the first time, an efficient biotechnological process for the production and purification of a recombinant, engineered PLL, SsoPox W263F, expressed in E. coli, has been set up by studying new induction strategies, by designing high cell density cultivations and a new membrane-based downstream process.
View Article and Find Full Text PDFProtein Pept Lett
August 2016
Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, (Mohali)-160 062, Punjab, India.
SsoPox, a ~35 kDa enzyme from Sulfolobus solfataricus, can hydrolyze and inactivate a variety of organophosphate (OP)-compounds. The enzyme is a potential candidate for the development of prophylactic and therapeutic agent against OP-poisoning in humans. However, the therapeutic use of recombinant SsoPox suffers from certain limitations associated with the use of recombinant protein pharmaceuticals.
View Article and Find Full Text PDFAppl Environ Microbiol
February 2011
Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
SsoPox, a bifunctional enzyme with organophosphate hydrolase and N-acyl homoserine lactonase activities from the hyperthermophilic archaeon Sulfolobus solfataricus, was overexpressed and purified from recombinant Pseudomonas putida KT2440 with a yield of 9.4 mg of protein per liter of culture. The enzyme has a preference for N-acyl homoserine lactones (AHLs) with acyl chain lengths of at least 8 carbon atoms, mainly due to lower K(m) values for these substrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!