Mutagenesis of conserved active site residues of dihydrolipoamide succinyltransferase enhances the accumulation of α-ketoglutarate in Yarrowia lipolytica.

Appl Microbiol Biotechnol

School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.

Published: January 2016

AI Article Synopsis

  • α-Ketoglutarate (α-KG) is a key molecule in the tricarboxylic acid cycle, with its metabolism influenced by the mitochondrial KGDH enzyme complex, which converts α-KG to succinyl-CoA.
  • Disruption of KGDH can be detrimental to aerobic cells, and overexpressing a component of this complex, dihydrolipoamide succinyltransferase (DLST), was found to decrease the enzyme's activity.
  • Two critical residues in DLST were mutated to study their roles in the enzyme's function, finding that these changes impacted the enzyme's catalytic efficiency and led to a significant increase in α-KG production in a mutant strain.

Article Abstract

α-Ketoglutarate (α-KG) is an important intermediate in the tricarboxylic acid cycle and has broad applications. The mitochondrial ketoglutarate dehydrogenase (KGDH) complex catalyzes the oxidation of α-KG to succinyl-CoA. Disruption of KGDH, which may enhance the accumulation of α-KG theoretically, was found to be lethal to obligate aerobic cells. In this study, individual overexpression of dihydrolipoamide succinyltransferase (DLST), which serves as the inner core of KGDH, decreased overall activity of the enzyme complex. Furthermore, two conserved active site residues of DLST, His419, and Asp423 were identified. In order to determine whether these residues are engaged in enzyme reaction or not, these two conserved residues were individually mutated. Analysis of the kinetic parameters of the enzyme variants provided evidence that the catalytic reaction of DLST depended on residues His419 and Asp423. Overexpression of mutated DLST not only impaired balanced assembly of KGDH, but also disrupted the catalytic integrity of the enzyme complex. Replacement of the Asp423 residue by glutamate increased extracellular α-KG by 40 % to 50 g L(-1) in mutant strain. These observations uncovered catalytic roles of two conserved active site residues of DLST and provided clues for effective metabolic strategies for rational carbon flux control for the enhanced production of α-KG and related bioproducts.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-015-6995-1DOI Listing

Publication Analysis

Top Keywords

conserved active
12
active site
12
site residues
12
dihydrolipoamide succinyltransferase
8
enzyme complex
8
residues dlst
8
his419 asp423
8
residues
6
α-kg
5
dlst
5

Similar Publications

In plasma, the zymogens factor XII (FXII) and prekallikrein reciprocally convert each other to the proteases FXIIa and plasma kallikrein (PKa). PKa cleaves high-molecular-weight kininogen (HK) to release bradykinin, which contributes to regulation of blood vessel tone and permeability. Plasma FXII is normally in a "closed" conformation that limits activation by PKa.

View Article and Find Full Text PDF

The mammalian Hippo kinases, MST1 and MST2, regulate organ development and suppress tumor formation by balancing cell proliferation and death. In macrophages, inflammasomes detect molecular patterns from invading pathogens or damaged host cells and trigger programmed cell death. In addition to lytic pyroptosis, the signatures associated with apoptosis are induced by inflammasome activation, but how the inflammasomes coordinate different cell death processes remains unclear.

View Article and Find Full Text PDF

Sensory experience during developmental critical periods has lifelong consequences for circuit function and behavior, but the molecular and cellular mechanisms through which experience causes these changes are not well understood. The antennal lobe houses synapses between olfactory sensory neurons (OSNs) and downstream projection neurons (PNs) in stereotyped glomeruli. Many glomeruli exhibit structural plasticity in response to early-life odor exposure, indicating a general sensitivity of the fly olfactory circuitry to early sensory experience.

View Article and Find Full Text PDF

Saving coral reefs: significance and biotechnological approaches for coral conservation.

Adv Biotechnol (Singap)

November 2024

Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.

Coral reefs are highly productive ecosystems that provide valuable services to coastal communities worldwide. However, both local and global anthropogenic stressors, threaten the coral-algal symbiosis that enables reef formation. This breakdown of the symbiotic relationship, known as bleaching, is often triggered by cumulative cell damage.

View Article and Find Full Text PDF

Unlabelled: Mutations affecting flagellin (FliC) have been shown to be hypervirulent in animal models and display increased toxin production and alterations in central metabolism. The regulation of flagellin levels in bacteria is governed by a tripartite regulatory network involving , , and , which creates a feedback system to regulate flagella production. Through genomic analysis of clade 5 strains (non-motile), we identified they have jettisoned many of the genes required for flagellum biosynthesis yet retain the major flagellin gene and regulatory gene .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!