Preparation and characterization of novel bionanocomposite based on soluble soybean polysaccharide and halloysite nanoclay.

Carbohydr Polym

Food Biopolymer Research Group, Food Science and Technology Department, Damghan Branch, Islamic Azad University, Damghan, Semnan, Iran. Electronic address:

Published: December 2015

In this research, casting method was used to prepare novel polysaccharide-based bio-nanocomposite films with halloysite nanoclay (HNC). HNC was incorporated into soluble soybean polysaccharide (SSPS) at different concentrations (e.g., 1, 3, and 5%, w/w). Functional properties of SSPS films were evaluated following by ASTM standards. Incorporating HNC to SSPS matrix decreased water vapor permeability from 7.41 × 10(-11) to 3.27 × 10(-11) (gm(-1) s(-1) Pa(-1)) and oxygen permeability from 202 to 84 cm(3)(μm m(-2) day(-1) atm(-1)). By addition of HNC to SSPS films, glass transition temperature, tensile strength, and heat seal strength was increased and elongation at break was decreased. Uniform and smooth surface morphology revealed by scanning electron microscopy and shows no sign of phase separation among the film constitutes. In summary, HNC has the potential to be a filler in SSPS-based films for use in food and non-food packaging industries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2015.08.059DOI Listing

Publication Analysis

Top Keywords

soluble soybean
8
soybean polysaccharide
8
halloysite nanoclay
8
ssps films
8
hnc ssps
8
hnc
5
preparation characterization
4
characterization novel
4
novel bionanocomposite
4
bionanocomposite based
4

Similar Publications

Highly efficient and durable electrocatalysts play a crucial role in promoting the hydrogen evolution reaction (HER). Among them, medium-entropy oxides (MEOs)-based electrocatalysts have attracted extensive attention due to the advantages of multiple principal components, lattice distortion, and a hysteresis diffusion effect. However, it is still challenging to design MEOs with rational structures and composition.

View Article and Find Full Text PDF

Soy protein isolate/dextran glycation conjugates: Fabrication through ultrasound-assisted cyclic continuous reaction and their applications as carriers of anthocyanins.

Int J Biol Macromol

January 2025

College of Chemistry and Life Sciences, Institute of Food Fermentation, Chengdu Normal University, Chengdu 611130, China; Key Laboratory of Functional Molecule Structure Optimisation and Application in Sichuan Province Colleges and Universities, Chengdu Normal University, Chengdu 611130, China. Electronic address:

The precise control of browning and enhancement of Maillard reaction kinetics to improve the surface functionality and nutrient encapsulation efficiency of soy proteins remains a significant challenge. This research presents an ultrasound-assisted cyclic reaction method (1-7 cycles) to synthesize soy protein isolate/dextran (SPI/D) conjugates with enhanced grafting degree and functionality during the Maillard reaction. The technique significantly increased the grafting degree to 65.

View Article and Find Full Text PDF

Enhancement of soy protein functionality by conjugation or complexation with polysaccharides or polyphenols: A review.

Compr Rev Food Sci Food Saf

January 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, School of Food Science and Technology, Collaborative innovation center of food safety and quality control in Jiangsu Province, Jiangnan University, Wuxi, China.

Soy proteins have good nutritional quality and exhibit a range of useful functional attributes, making them a viable option for replacing animal proteins in the development of more sustainable and eco-friendly plant-based food products. Nevertheless, soy proteins are prone to denaturation and/or aggregation under conditions they encounter in some food and beverage products (including certain pH, ionic, and thermal conditions), which adversely impact their functional performance. This problem can often be overcome by covalently (conjugation) or noncovalently (complexation) linking the soy proteins to polysaccharides or polyphenols, thereby expanding their application scope.

View Article and Find Full Text PDF

Microencapsulation of Pickering nanoemulsions containing walnut oil stabilized using soy protein-curcumin composite nanoparticles: Fabrication and evaluation of a novel plant-based milk substitute.

Food Chem

December 2024

School of Food and Biological Engineering, Key Laboratory of Modern Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China. Electronic address:

Plant protein-stabilized Pickering nanoemulsions show potential as plant-based milk substitutes; however, their stability is challenged by mechanical stress during transportation and oxidative deterioration during storage. Herein, soybean isolate protein-curcumin composite nanoparticle (SPI-Cur-NPs)-stabilized Pickering nanoemulsions were converted into microcapsule powders via spray-drying with maltodextrin (MD), trehalose anhydrous (TA), and inulin (IN) as wall materials. Robust intermolecular hydrogen bonds and an amorphous structure were formed using composite wall materials, reducing microcapsule surface fissures while improving encapsulation rate (92.

View Article and Find Full Text PDF

Pinto beans, an underutilized legume, are abundant in protein content and contain a variety of beneficial phytonutrients. However, the commonly used protein extraction method, alkaline extraction, is associated with several drawbacks. These drawbacks include low extraction yield and purity as well as the production of large amounts of wastewater that can lead to environmental hazards.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!