The catalytic properties of Cu-ZnO catalysts for glycerol hydrogenolysis to 1,2-propanediol (1,2-PDO) were tested in a fixed-bed reactor at 250 °C and 2.0 MPa H2. The relation between composition, surface properties, and catalytic performance of glycerol hydrogenation of Cu-ZnO catalysts was studied using nitrogen adsorption (BET methods), XRD, H2 temperature-programmed reduction, and N2O chemisorptions. It was found that there was a close link between the surface CuO amount of Cu-ZnO catalyst and the reactivity for glycerol hydrogenation. The Cu-ZnO catalyst (Cu/Zn = 1.86) which had the highest surface Cu amount showed the best catalytic activity for glycerol hydrogenolysis. Furthermore, Cu-ZnO catalyst presented good stability and remarkable catalytic activity for glycerol hydrogenolysis to 1,2-PDO using raw glycerol derived from the fat saponification as feedstock.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09168451.2015.1088372 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Karlsruhe Institute of Technology KIT, Institute for Chemical Technology and Polymer Chemistry, Kaiserstr. 12, Fakultät für Chemie, 76131, Karlsruhe, GERMANY.
In the frame of developing a sustainable chemical industry, heterogeneously catalyzed CO2 hydrogenation to methanol has attracted considerable interest. However, the Cu-Zn based catalyst system employed in this process is very dynamic, especially in the presence of the products methanol and water. Deactivation needs to be prevented, but its origin and mechanism are hardly investigated at high conversion where product condensation is possible.
View Article and Find Full Text PDFChem Sci
December 2024
Department of Applied Chemistry, School of Engineering, University of Toyama Gofuku 3190 Toyama 930-8555 Japan
Direct conversion of CO with renewable H to produce methanol provides a promising way for CO utilization and H storage. Cu/ZnO catalysts are active, but their activities depend on the preparation methods. Here, we reported a facile mechanical grinding method for the fast synthesis of Cu@zeolitic imidazolate framework-8 (ZIF-8) derived Cu/ZnO catalysts applied in CO hydrogenation to methanol.
View Article and Find Full Text PDFRSC Adv
January 2025
Institute of Technical and Macromolecular Chemistry, University of Hamburg Bundesstraße 45 Hamburg 20146 Germany +49 40 42838 3172.
Dimethyl ether (DME) is a versatile molecule, gaining increasing interest as a viable hydrogen and energy storage solution, pivotal for the transitioning from fossil fuels to environmentally friendly and sustainable energy supply. This research explores a novel approach for the direct conversion of CO to DME in a fixed-bed reactor, combining the Cu/ZnO/AlO methanol synthesis catalyst with supported heteropolyacids (HPAs). First, various HPAs, both commercially available and custom-synthesized, were immobilized on Montmorillonite K10.
View Article and Find Full Text PDFChem Sci
January 2025
Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK +44 (0)1865 272686.
We report a new synthetic strategy for preparing well-organised, spherical and mesoporous, mixed-metal, hollow-core@layered double hydroxides. Hollow-SiO@Cu Zn Mg Al-LDHs ( + + = 2.32 ± 0.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China.
Natural self-purification of water is limited by mass transfer processes between inert oxygen (O) and stable pollutants. This process must rely on large energy inputs and resource consumption, which have become a global challenge in the environmental field. Here, we greatly amplify this self-purification effect of natural dissolved oxygen (DO) by nonexpendable HO triggering a DRC catalyst with a micro-potential difference surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!