Demographic, functional, or habitat diversity can confer stability on populations via portfolio effects (PEs) that integrate across multiple ecological responses and buffer against environmental impacts. The prevalence of these PEs in aquatic organisms is as yet unknown, and can be difficult to quantify; however, understanding mechanisms that stabilize populations in the face of environmental change is a key concern in ecology. Here, we examine PEs in Pacific herring (Clupea pallasii) in Puget Sound (USA) using a 40-year time series of biomass data for 19 distinct spawning population units collected using two survey types. Multivariate auto-regressive state-space models show independent dynamics among spawning subpopulations, suggesting that variation in herring production is partially driven by local effects at spawning grounds or during the earliest life history stages. This independence at the subpopulation level confers a stabilizing effect on the overall Puget Sound spawning stock, with herring being as much as three times more stable in the face of environmental perturbation than a single population unit of the same size. Herring populations within Puget Sound are highly asynchronous but share a common negative growth rate and may be influenced by the Pacific Decadal Oscillation. The biocomplexity in the herring stock shown here demonstrates that preserving spatial and demographic diversity can increase the stability of this herring population and its availability as a resource for consumers.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-015-3439-7DOI Listing

Publication Analysis

Top Keywords

puget sound
16
pacific herring
8
sound usa
8
face environmental
8
herring
7
population
4
population diversity
4
diversity pacific
4
puget
4
herring puget
4

Similar Publications

Bleeding symptoms and laboratory correlation in patients with severe von Willebrand disease.

Haemophilia

July 2009

Penn Comprehensive Hemophilia and Thrombosis Program, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA.

Type 3 von Willebrand disease (VWD) is a rare bleeding disorder with markedly decreased or absent von Willebrand factor (VWF) protein, accompanied by a parallel decrease in VWF function and factor VIII (FVIII) activity. The goal of this study was to describe the population of patients enrolled in the USA Centers for Disease Control Universal Data Collection (UDC) study with type 3 VWD, defined as a VWF:Ag of <10%, and to correlate bleeding symptoms with VWF and FVIII levels. Data on 150 patients were analysed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!