Stable isotope tracing: a powerful tool for selenium speciation and metabolic studies in non-hyperaccumulator plants (ryegrass Lolium perenne L.).

Anal Bioanal Chem

Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE), Université de Pau et des Pays de l'Adour/CNRS, UMR 5254, IPREM, Hélioparc, 2 Avenue du Président Angot, 64053, Pau Cedex 9, France.

Published: December 2015

Selenium is both essential and toxic for mammals; the range between the two roles is narrow and not only dose-dependent but also related to the chemical species present in foodstuff. Unraveling the metabolism of Se in plants as a function of Se source may thus lead to ways to increase efficiency of fertilization procedures in selenium deficient regions. In this study, stable-isotope tracing was applied for the first time in plants to simultaneously monitor the bio-incorporation of two inorganic Se species commonly used as foodstuff enrichment sources. Occurrence and speciation of Se coming from different Se sources were investigated in root and leaf extracts of ryegrass (Lolium perenne L.), which had been co-exposed to two labeled Se species ((77)SeIV and (82)SeVI). Although the plant absorbed similar amounts of Se when supplied in the form of selenite or selenate, the results evidenced marked differences in speciation and tissues allocation. Selenite was converted into organic forms incorporated mostly into high molecular weight compounds with limited translocation to leaves, whereas selenate was highly mobile being little assimilated into organic forms. Double-spike isotopic tracer methodology makes it possible to compare the metabolism of two species-specific Se sources simultaneously in a single experiment and to analyze Se behavior in not-hyperaccumulator plants, the ICP-MS sensitivity being improved by the use of enriched isotopes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-015-9069-4DOI Listing

Publication Analysis

Top Keywords

ryegrass lolium
8
lolium perenne
8
organic forms
8
stable isotope
4
isotope tracing
4
tracing powerful
4
powerful tool
4
tool selenium
4
selenium speciation
4
speciation metabolic
4

Similar Publications

Interaction between saflufenacil and ammonium glufosinate to control ryegrass.

Braz J Biol

January 2025

Universidade Federal de Santa Maria - UFSM, Departamento de Defesa Fitossanitária, Santa Maria, RS, Brasil.

Annual ryegrass (Lolium multiflorum Lam.) is one of the main weeds in subtropical cropping systems of Europe, Oceania and South America. Therefore, the hypothesis of this work is that the interaction between ammonium glufosinate and saflufenacil can be synergistic for ryegrass control.

View Article and Find Full Text PDF

Lead (Pb), one of the most ubiquitous and harmful contaminants of farmland, seriously threatens soil health and food security. Silicon nanoparticles (SiNPs) have potential applications in soil remediation and phytoremediation. Yet, how SiNPs influence plant growth under Pb stress remains poorly understood.

View Article and Find Full Text PDF

Identifying weed species at early-growth stages is critical for precision agriculture. Accurate classification at the species-level enables targeted control measures, significantly reducing pesticide use. This paper presents a dataset of RGB images captured with a Sony ILCE-6300L camera mounted on an unmanned aerial vehicle (UAV) flying at an altitude of 11 m above ground level.

View Article and Find Full Text PDF

Background: Resistance to multiple herbicides is common in Lolium rigidum. Here, resistance to acetolactate synthase (ALS)- and susceptibility to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides was confirmed in a glyphosate-resistant L. rigidum population (NLR70) from Australia and the mechanisms of pyroxsulam resistance were examined.

View Article and Find Full Text PDF

Elevated atmospheric CO2 (e[CO2]) often enhances plant photosynthesis and improves water status. However, the effects of e[CO2] vary significantly and are believed to be influenced by water availability. With the future warmer climate expected to increase the frequency and severity of extreme rainfall, the response of plants to e[CO2] under changing precipitation patterns remains uncertain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!