Prediction of retention characteristics of heterocyclic compounds.

Anal Bioanal Chem

Faculty of Pharmacy, Department of Inorganic and Organic Chemistry, Charles University in Prague, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic.

Published: December 2015

The CORAL software ( http://www.insilico.eu/coral ) was used to build up quantitative structure-property relationships (QSPRs) for the retention characteristics of 93 derivatives of three groups of heterocyclic compounds: 2-phenyl-1,3-benzoxazoles, 4-benzylsulfanylpyridines, and benzoxazines. The QSPRs are one-variable models based on the optimal descriptors calculated from the molecular structure represented by simplified molecular input-line entry systems (SMILES). Each symbol (or two undivided symbols) of SMILES is characterized by correlation weight. The optimal descriptor is the sum of the correlation weights. The numerical data on the correlation weights were calculated with the Monte Carlo method by the manner which provides best correlation between endpoint and optimal descriptor for the calibration set. The predictive ability of the model is checked with the validation set (compounds invisible during building up of the model). The approach has been checked with three random splits into the training, calibration, and validation sets: all models have apparent predictive potential. The mechanistic interpretation of the molecular features extracted from SMILES as the promoters of increase or decrease of examined endpoints is suggested.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-015-9067-6DOI Listing

Publication Analysis

Top Keywords

retention characteristics
8
heterocyclic compounds
8
optimal descriptor
8
correlation weights
8
prediction retention
4
characteristics heterocyclic
4
compounds coral
4
coral software
4
software http//wwwinsilicoeu/coral
4
http//wwwinsilicoeu/coral build
4

Similar Publications

The development of devices capable of storing energy harnessed from photons is on the rise, owing to the increasing global energy demand for smart systems. The majority of reports in this field cover the use of integrated type devices, which houses a separate photovoltaic module and supercapacitor or battery. Herein, we are reporting a photocapacitor with a simple two-electrode design, capable of operating without a conventional electrolyte or metal ions.

View Article and Find Full Text PDF

Background: Autologous fat grafting (AFG) often needs multiple sessions due to low volume retention. Young adipose tissue demonstrates a more pronounced therapeutic effect; thus, the cryopreservation of adipose tissue of young origin is particularly crucial. This study investigated the protective effect of a new cryopreservation solution combining trehalose, glycerol, and metformin on adipose tissue.

View Article and Find Full Text PDF

Chitosan- and sodium alginate-coated dendritic mesoporous organosilica nanoparticles improve pesticide adhesion on leaves and enable dual-stimulus-responsive release.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China. Electronic address:

During the application of most conventional pesticides, a significant proportion is lost through rain wash-off and leaf rolling, leading to reduced actual utilization efficiency. In this paper, aminated dendritic mesoporous organosilicon nanoparticles (DMONs-NH) were synthesized via a one-pot method and used as carriers. Carbendazim (CBZ) was then encapsulated within DMONs-NH through hydrogen bonding and electrostatic interactions.

View Article and Find Full Text PDF

Multifunctional Artificial Electric Synapse of MoSe-Based Memristor toward Neuromorphic Application.

J Phys Chem Lett

January 2025

Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.

Research on memristive devices to seamlessly integrate and replicate the dynamic behaviors of biological synapses will illuminate the mechanisms underlying parallel processing and information storage in the human brain, thereby affording novel insights for the advancement of artificial intelligence. Here, an artificial electric synapse is demonstrated on a one-step Mo-selenized MoSe memristor, having not only long-term stable resistive switching characteristics (reset 0.51 ± 0.

View Article and Find Full Text PDF

We demonstrate low energy, forming and compliance-free operation of a resistive memory obtained by the partial oxidation of a two-dimensional layered van-der-Waals semiconductor: hafnium disulfide (HfS). Semiconductor-oxide heterostructures are achieved by low temperature (<300 °C) thermal oxidation of HfS under dry conditions, carefully controlling process parameters. The resulting HfOS/HfS heterostructures are integrated between metal contacts, forming vertical crossbar devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!