Cotransplantation of Polymerized Hemoglobin Reduces β-Cell Hypoxia and Improves β-Cell Function in Intramuscular Islet Grafts.

Transplantation

1 Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden. 2 Department of Medical Sciences, Uppsala University, Uppsala, Sweden. 3 William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH.

Published: October 2015

Background: Muscle is a promising alternative site for islet transplantation that facilitates rapid restoration of islet vascularization. However, the development of fibrosis suggests massive cellular death after transplantation. This study tested the hypothesis that islet graft function is limited by hypoxia-related death early after intramuscular transplantation, but that this can be overcome by cotransplantation of an oxygen carrier, that is, polymerized bovine hemoglobin (PolyHb).

Methods: Two hundred islets were transplanted with or without different doses of PolyHb intramuscularly to nondiabetic C57BL/6 and diabetic C57BL/6 nu/nu mice. β-cell hypoxia and apoptosis were evaluated by immunohistochemistry after injection of the biochemical marker pimonidazole or by staining for caspase-3, respectively. Blood glucose concentrations were monitored for 30 days after islet transplantation and animals were then subjected to an intravenous glucose tolerance test.

Results: Substantial hypoxia was observed in control islet grafts during the first 4 days after transplantation. Cotransplantation of PolyHb resulted in a dose-dependent reduction of β-cell hypoxia, but β-cell apoptosis was only reduced by cotransplantation of low-dose PolyHb (0.03 mg/g body weight) due to the inflammatory effects of higher PolyHb concentrations. Cotransplantation of low-dose PolyHb resulted in improved islet graft function 30 days after transplantation in diabetic mice, with a glucose tolerance comparable to transplantation of 50% more islets.

Conclusion: We conclude that cotransplantation of islets with PolyHb can be used to effectively bridge the critical hypoxic phase immediately after transplantation, improve islet graft function, and reduce the number of islets needed for successful intramuscular transplantation.

Download full-text PDF

Source
http://dx.doi.org/10.1097/TP.0000000000000815DOI Listing

Publication Analysis

Top Keywords

β-cell hypoxia
12
islet graft
12
graft function
12
transplantation
9
islet
8
islet grafts
8
islet transplantation
8
intramuscular transplantation
8
glucose tolerance
8
days transplantation
8

Similar Publications

Background: Tumour hypoxia resulting from inadequate perfusion is common in many solid tumours, including prostate cancer, and constitutes a major limiting factor in radiation therapy that contributes to treatment resistance. Emerging research in preclinical animal models indicates that exercise has the potential to enhance the efficacy of cancer treatment by modulating tumour perfusion and reducing hypoxia; however, evidence from randomised controlled trials is currently lacking. The 'Exercise medicine as adjunct therapy during RADIation for CAncer of the prostaTE' (ERADICATE) study is designed to investigate the impact of exercise on treatment response, tumour physiology, and adverse effects of treatment in prostate cancer patients undergoing external beam radiation therapy (EBRT).

View Article and Find Full Text PDF

Tumour hypoxia in driving genomic instability and tumour evolution.

Nat Rev Cancer

January 2025

Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.

Intratumour hypoxia is a feature of all heterogenous solid tumours. Increased levels or subregions of tumour hypoxia are associated with an adverse clinical prognosis, particularly when this co-occurs with genomic instability. Experimental evidence points to the acquisition of DNA and chromosomal alterations in proliferating hypoxic cells secondary to inhibition of DNA repair pathways such as homologous recombination, base excision repair and mismatch repair.

View Article and Find Full Text PDF

Using a novel unsupervised method to integrate multi-omic data, we previously identified a breast cancer group with a poor prognosis. In the current study, we characterize the biological features of this subgroup, defined as the high-risk group, using various data sources. Assessment of three published hypoxia signatures showed that the high-risk group exhibited higher hypoxia scores (p < 0.

View Article and Find Full Text PDF

Mitochondrial quality control is crucial for the homeostasis of the mitochondrial network. The balance between mitophagy and biogenesis is needed to reduce cerebral ischemia-induced cell death. Ischemic preconditioning (IPC) represents an adaptation mechanism of CNS that increases tolerance to lethal cerebral ischemia.

View Article and Find Full Text PDF

The cysteine/arginine (Cys/Arg) branch of the N-degron pathway controls the stability of certain proteins with methionine (Met)-Cys N-termini, initiated by Met cleavage and Cys oxidation. In seeding plants, target proteins include the Group VII Ethylene Response Factors, which initiate adaptive responses to low oxygen (hypoxic) stress, as well as Vernalization 2 (VRN2) and Little Zipper 2 (ZPR2), which are involved in responses to endogenous developmental hypoxia. It is essential that these target proteins are only degraded by the N-degron pathway under the appropriate physiological conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!