Objectives: Transvaginal and intracavitary ultrasound probes are a possible source of cross-contamination with microorganisms and thus a risk to patients' health. Therefore appropriate methods for reprocessing are needed. This study was designed to compare the standard disinfection method for transvaginal ultrasound probes in Germany with an automated disinfection method in a clinical setting.
Methods: This was a prospective randomized controlled clinical study of two groups. In each group, 120 microbial samples were collected from ultrasound transducers before and after disinfection with either an automated method (Trophon EPR®) or a manual method (Mikrozid Sensitive® wipes). Samples were then analyzed for microbial growth and isolates were identified to species level.
Results: Automated disinfection had a statistically significantly higher success rate of 91.4% (106/116) compared with 78.8% (89/113) for manual disinfection (P = 0.009). The risk of contamination was increased by 2.9-fold when disinfection was performed manually (odds ratio, 2.9 (95% CI, 1.3-6.3)). Before disinfection, bacterial contamination was observed on 98.8% of probes. Microbial analysis revealed 36 different species of bacteria, including skin and environmental bacteria as well as pathogenic bacteria such as Staphylococcus aureus, enterobacteriaceae and Pseudomonas spp.
Conclusions: Considering the high number of contaminated probes and bacterial species found, disinfection of the ultrasound probe's body and handle should be performed after each use to decrease the risk of cross-contamination. This study favored automated disinfection owing to its significantly higher efficacy compared with a manual method. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/uog.15771 | DOI Listing |
Nat Commun
January 2025
Department of Biomedical Engineering, Duke University, Durham, NC, USA.
Acoustically probing biological tissues with light or sound, photoacoustic and ultrasound imaging can provide anatomical, functional, and/or molecular information at depths far beyond the optical diffusion limit. However, most photoacoustic and ultrasound imaging systems rely on linear-array transducers with elevational focusing and are limited to two-dimensional imaging with anisotropic resolutions. Here, we present three-dimensional diffractive acoustic tomography (3D-DAT), which uses an off-the-shelf linear-array transducer with single-slit acoustic diffraction.
View Article and Find Full Text PDFJ Med Chem
January 2025
Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, 20892 United States.
J Clin Gastroenterol
January 2025
The Third Central Hospital of Tianjin, Hedong District.
Goals: To explore dynamic contrast-enhanced ultrasound (CEUS) parameters in predicting hepatic vein pressure gradient (HVPG) for patients with liver cirrhosis (LC).
Background: Noninvasive diagnosis of HVPG remains a challenge.
Study: This prospective study included patients with LC undergoing hepatic vein catheterization and pressure measurement at the hospital from May 2021 to January 2023.
J Mater Chem B
January 2025
Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
The critical need for rapid cancer diagnosis and related illnesses is growing alongside the current healthcare challenges, unfavorable prognosis, and constraints in diagnostic timing. As a result, emphasis on surface-enhanced Raman spectroscopy (SERS) diagnostic methods, including both label-free and labelled approaches, holds significant promise in fields such as analytical chemistry, biomedical science, and physics, due to the user-friendly nature of SERS. Over time, the SERS detection sensitivity and specificity with nanostructured materials for SERS applications (NMs-SERS) in different media have been remarkable.
View Article and Find Full Text PDFSci Rep
January 2025
Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
Diffusion MRI is a leading method to non-invasively characterise brain tissue microstructure across multiple domains and scales. Diffusion-weighted steady-state free precession (DW-SSFP) is an established imaging sequence for post-mortem MRI, addressing the challenging imaging environment of fixed tissue with short T and low diffusivities. However, a current limitation of DW-SSFP is signal interpretation: it is not clear what diffusion 'regime' the sequence probes and therefore its potential to characterise tissue microstructure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!