Autism Spectrum Disorder (ASD) is a behaviorally defined neurodevelopmental condition. Symptoms of ASD cover the spectrum from mild qualitative differences in social interaction to severe communication and social and behavioral challenges that require lifelong support. Attempts at understanding the pathophysiology of ASD have been hampered by a multifactorial etiology that stretches the limits of current behavioral and cell based models. Recent progress has implicated numerous autism-risk genes but efforts to gain a better understanding of the underlying biological mechanisms have seen slow progress. This is in part due to lack of appropriate models for complete molecular and pharmacological studies. The advent of induced pluripotent stem cells (iPSC) has reinvigorated efforts to establish more complete model systems that more reliably identify molecular pathways and predict effective drug targets and candidates in ASD. iPSCs are particularly appealing because they can be derived from human patients and controls for research purposes and provide a technology for the development of a personalized treatment regimen for ASD patients. The pluripotency of iPSCs allow them to be reprogrammed into a number of CNS cell types and phenotypically screened across many patients. This quality is already being exploited in protocols to generate 2-dimensional (2-D) and three-dimensional (3-D) models of neurons and developing brain structures. iPSC models make powerful platforms that can be interrogated using electrophysiology, gene expression studies, and other cell-based quantitative assays. iPSC technology has limitations but when combined with other model systems has great potential for helping define the underlying pathophysiology of ASD. Autism Res 2016, 9: 513-535. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/aur.1570 | DOI Listing |
Stem Cell Res
December 2024
Emergency and Critical Care Department, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao 266042, China. Electronic address:
A human induced pluripotent stem cell (iPSC) line was generated from patient with Kennedy Disease (KD), who carried the CAG repeat expansion mutation in AR gene. Peripheral blood mononuclear cells (PBMCs) were reprogrammed using non-integrating delivery of KFL4, OCT4, SOX2, BCL-XL and c-MYC. The iPSC line expresses pluripotency markers, displays a normal karyotype, and is capable of differentiate into three germ layers in vitro.
View Article and Find Full Text PDFStem Cell Res
December 2024
Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain.
Mutations in the PRPF31 gene are a well-known cause of autosomal dominant retinitis pigmentosa (RP), the most prevalent genetic form of blindness in adults, affecting 1 in 4,000 individuals globally. In this study, peripheral blood mononuclear cells from a patient carrying a heterozygous mutation in PRPF31 were reprogrammed to generate the human iPSC line ESi132-A. This cell line was thoroughly characterized for self-renewal and pluripotency.
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
Background: Undifferentiated embryonic cell transcription factor 1 (UTF1) is predominantly expressed in pluripotent stem cells and plays a vital role in embryonic development and pluripotency maintenance. Despite its established importance in murine models, the role of UTF1 on human induced pluripotent stem cells (iPSCs) has not been comprehensively studied.
Methods: This study utilized CRISPR/Cas9 gene editing to create UTF1 knockout in human fibroblasts and iPSCs.
Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease caused by mutations in the SACS gene. The first two mutations were identified in French Canadian populations 20 years ago. The disease is now known as one of the most frequent recessive ataxias worldwide.
View Article and Find Full Text PDFNat Chem Biol
January 2025
MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
Chemical reprogramming enables the generation of human pluripotent stem (hCiPS) cells from somatic cells using small molecules, providing a promising strategy for regenerative medicine. However, the current method is time consuming, and some cell lines from different donors are resistant to chemical induction, limiting the utility of this approach. Here, we developed a fast reprogramming system capable of generating hCiPS cells in as few as 10 days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!