In cellulo protein labelling with Ru-conjugate for luminescence imaging and bioorthogonal photocatalysis.

Chem Commun (Camb)

University of Geneva, School of Chemistry and Biochemsitry, NCCR Chemical Biology, 30 quai Ernest Ansermet, Geneva, Switzerland.

Published: December 2015

Labelling of proteins with a luminescent ruthenium complex enables the direct visualization and photocatalytic reduction of aryl azide in live cells. The confinement of catalysis to the labeled proteins was visualized using an azide-based immolative linker releasing a precipitating dye.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cc05405bDOI Listing

Publication Analysis

Top Keywords

cellulo protein
4
protein labelling
4
labelling ru-conjugate
4
ru-conjugate luminescence
4
luminescence imaging
4
imaging bioorthogonal
4
bioorthogonal photocatalysis
4
photocatalysis labelling
4
labelling proteins
4
proteins luminescent
4

Similar Publications

Citrullination at the N-terminal region of MDM2 by the PADI4 enzyme.

Protein Sci

February 2025

Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.

PADI4 is one of the human isoforms of a family of enzymes involved in the conversion of arginine to citrulline. MDM2 is an E3 ubiquitin ligase that is critical for degradation of the tumor suppressor gene p53. We have previously shown that there is an interaction between MDM2 and PADI4 in cellulo, and that such interaction occurs through the N-terminal region of MDM2, N-MDM2, and in particular through residues Thr26, Val28, Phe91, and Lys98.

View Article and Find Full Text PDF

Supplying LSD1 with FAD in pancreatic cancer: A matter of protein-protein interaction?

Arch Biochem Biophys

February 2025

Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy. Electronic address:

Lysine-specific demethylase 1 (LSD1) is a key regulator in cancer epigenetic, and its activity is reliant on flavin adenine dinucleotide (FAD) as a cofactor. In this study, we investigated the correlation between LSD1 and FAD synthase isoform 2 (FADS2) protein levels in pancreatic ductal adenocarcinoma (PDAC) cell lines. We first assessed LSD1 protein and mRNA levels in mutant p53-expressing PANC-1 and MiaPaCa2 cells and p53-null AsPc-1 cells, compared to human pancreatic ductal epithelial (HPDE) controls.

View Article and Find Full Text PDF

Artificial metalloenzyme assembly in cellular compartments for enhanced catalysis.

Nat Chem Biol

January 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China.

Artificial metalloenzymes (ArMs) integrated within whole cells have emerged as promising catalysts; however, their sensitivity to metal centers remains a systematic challenge, resulting in diminished activity and turnover. Here we address this issue by inducing in cellulo liquid-liquid phase separation through a self-labeling fusion protein, HaloTag-SNAPTag. This strategy creates membraneless, isolated liquid condensates within Escherichia coli as protective compartments for the assembly of ArMs using the same fusion protein.

View Article and Find Full Text PDF

Reactive carbonyl species (RCS) are important biomarkers of oxidative stress-related diseases because of their highly reactive electrophilic nature. Despite their potential as triggers for prodrug activation, selective labeling approaches for RCS remain limited. Here, we utilized triphenylphosphonium groups to chemoselectively capture RCS via an aqueous Wittig reaction, forming α,β-unsaturated carbonyls that enable further functionalization.

View Article and Find Full Text PDF

Interphase chromatin biophysics and mechanics: new perspectives and open questions.

Curr Opin Genet Dev

February 2025

Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664 Laboratoire Dynamique du Noyau, CNRS UMR168 Laboratoire Physique des Cellules et Cancer, 75005 Paris, France. Electronic address:

The physical organization and properties of chromatin within the interphase nucleus are intimately linked to a wide range of functional DNA-based processes. In this context, interphase chromatin mechanics - that is, how chromatin, physically, responds to forces - is gaining increasing attention. Recent methodological advances for probing the force-response of chromatin in cellulo open new avenues for research, as well as new questions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!