Technical Assessment of Internal Surface Smoothness and Particle Transmission to the American National Standard ANSI/HPS N13.1-2011.

Health Phys

*Pacific Northwest National Laboratory, P.O. Box 999, MSIN K7-68, Richland, WA 99352.

Published: November 2015

Clause 6.4.4 in the American National Standard ANSI/HPS N13.1 standard "Sampling and Monitoring Releases of Airborne Radioactive Substances From the Stacks and Ducts of Nuclear Facilities" addresses the internal smoothness of sample transport lines present between the nozzle and the analyzer (or collector). The appropriateness of this clause is evaluated by comparing roughness length of various materials against the required relative roughness and by conducting computational fluid dynamic modeling. The results indicate that the inclusion of numerical criteria for the relative roughness of pipe by the ANSI/HPS N13.1-2011 (clause 6.4.4) is not appropriate. Recommended alternatives would be elimination of the numerical criteria or modification of the standard to include a variable criterion for relative roughness.

Download full-text PDF

Source
http://dx.doi.org/10.1097/HP.0000000000000325DOI Listing

Publication Analysis

Top Keywords

relative roughness
12
american national
8
national standard
8
standard ansi/hps
8
ansi/hps n131-2011
8
n131-2011 clause
8
clause 644
8
numerical criteria
8
technical assessment
4
assessment internal
4

Similar Publications

Functionalization of Polymer Surfaces for Organic Photoresist Materials.

ACS Appl Mater Interfaces

January 2025

Tokyo Electron America, Inc., 2400 Grove Blvd., Austin, Texas 78741, United States.

Photoresists are thin film materials designed to transform an optimal image into a mechanical mask. Diverse exposure techniques such as photolithography induce modifications in the exposed areas that result in solubility changes that can then be selectively removed with appropriate agents (developers). Photoresist materials need to keep pace with the increasingly demand for feature size reduction.

View Article and Find Full Text PDF

Genetic analysis of L 1758 (Mollusca, Bivalvia, Pinnidae) in the Northwest Cabo Verde Islands (Central-East Atlantic).

PeerJ

January 2025

CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Porto, Portugal.

The rough pen shell Linnaeus, 1758 (family Pinnidae) is a mollusc with an Atlantic-Mediterranean distribution, typically inhabiting coarse sandy substrates. Habitat degradation is considered the primary cause of population decline, leading to the designation 'Vulnerable' in certain regions. In this study, we conducted a genetic analysis of populations of from Cabo Verde and compared them with populations from the Mediterranean and Macaronesia.

View Article and Find Full Text PDF

The initial investigation evaluates the feasibility of ultra high performance concrete (UHPC) as a material for reusable molds in aluminum casting. Two specific UHPC formulations were investigated: one based on ordinary Portland cement (OPC) and another utilizing alkali-activated materials (AAM). The study focused on investigating the surface through roughness measurements and the thermal durability through repeated casting cycles.

View Article and Find Full Text PDF

Wire-arc additive manufacturing (WAAM) has fully empowered the design and manufacturing of metals with its unparalleled efficiency and flexibility. However, the process has relatively poor shape control capabilities, often requiring machining post-processing. This study explores a tungsten inert gas arc remelting (TIGAR) process to improve the surface flatness of WAAM components at a low cost and significantly reduce machining waste (up to 76%), which is crucial for the sustainable development of the process.

View Article and Find Full Text PDF

Influence of Periodically Varying Slit Widths on Sound Absorption by a Slit Pore Medium.

Materials (Basel)

December 2024

School of Engineering and Innovation, The Open University, Milton Keynes MK7 6AA, UK.

A simple pore microstructure of parallel, identical, and inclined smooth-walled slits in a rigid solid, for which prediction of its geometrical and acoustic properties is straightforward, can yield useful sound absorption. This microstructure should be relatively amenable to 3D printing. Discrepancies between measurements and predictions of normal incidence sound absorption spectra of 3D printed vertical and slanted slit pore samples have been attributed to the rough surfaces of the slit walls and uneven slit cross-sections perpendicular to the printing direction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!