Although Epstein-Barr virus (EBV) infection is widely distributed, certain EBV-driven malignancies are geographically restricted. EBV-associated Burkitt's lymphoma (eBL) is endemic in children living in sub-Saharan Africa. This population is heavily exposed to food contaminated with the mycotoxin aflatoxin B1 (AFB1). Here, we show that exposure to AFB1 in in vitro and in vivo models induces activation of the EBV lytic cycle and increases EBV load, two events that are associated with an increased risk of eBL in vivo. AFB1 treatment leads to the alteration of cellular gene expression, with consequent activations of signaling pathways, e.g. PI3K, that in turn mediate reactivation of the EBV life cycle. Finally, we show that AFB1 triggers EBV-driven cellular transformation both in primary human B cells and in a humanized animal model. In summary, our data provide evidence for a role of AFB1 as a cofactor in EBV-mediated carcinogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/bgv142DOI Listing

Publication Analysis

Top Keywords

mycotoxin aflatoxin
8
vitro vivo
8
afb1
5
aflatoxin stimulates
4
stimulates epstein-barr
4
epstein-barr virus-induced
4
virus-induced b-cell
4
b-cell transformation
4
transformation vitro
4
vivo experimental
4

Similar Publications

Background: The Mycotoxin Mitigation Trial (MMT) was a community-based cluster-randomized trial designed to assess the effect of dietary aflatoxin (AF) on linear growth. Similar dietary intake between arms was an important component of the trial's program theory and essential for the trial's internal validity and interpretation.

Objective: This analysis assessed and compared dietary intake by arm within a sub-sample of infants enrolled in the MMT.

View Article and Find Full Text PDF

Background: This study employed melanin synthesized by Aspergillus flavus and Aspergillus carbonarius to inhibit the production of mycotoxins and bioremediation of heavy metals (HMs).

Methods: First, twenty fungal isolates were obtained from soil samples, and were evaluated to produce melanin. The melanin of the most potent producers has undergone several confirmatory experiments, including, Dihydroxyphenylalanine (DOPA)-inhibitor-kojic acid pathway detection, High-performance liquid chromatography (HPLC), Fourier-transform infrared (FTIR) and Nuclear magnetic resonance (NMR).

View Article and Find Full Text PDF

Brazil is an influential and successful food-producing country, where we can highlight artisanal cheeses gaining visibility in foreign markets. Some of these cheeses are made from raw milk, making them susceptible to contamination by microorganisms, including fungi, which can produce harmful mycotoxins. Feed contaminated with aflatoxin B1, when consumed by dairy animals, is metabolized and transformed into aflatoxin M1 (AFM1), which is excreted in milk.

View Article and Find Full Text PDF

Risk ranking of mycotoxins in plant-based meat and dairy alternatives under protein transition scenarios.

Food Res Int

January 2025

Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium.

While reducing the consumption of animal-source foods is recommended for planetary and human health, potential emerging food safety risks associated with the transition to dietary patterns featuring plant-based meat (PBMA) and dairy alternatives (PBDA) remain unexplored. We assessed the exposure to mycotoxins and ranked the associated health risks related to the consumption of PBMA and PBDA. We simulated diets by replacing animal-source proteins with their plant-based alternatives.

View Article and Find Full Text PDF

Bioavailability study of OTA, ZEN, and AFB1 along with bioactive compounds from tiger nut beverage and its by-products.

Food Res Int

January 2025

Laboratory of Food Chemistry and Toxicology, Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain.

Mycotoxins pose significant health risks due to their prevalence in food products and severe health implications, including carcinogenicity. This study investigates the bioavailability of mycotoxins aflatoxin B1 (AFB1), ochratoxin A (OTA), and zearalenone (ZEN) individually and combined, in the presence of identified polyphenols from tiger nut beverage (TNB) and tiger nut by-product (TNBP) using the in vitro model Caco-2 cells, which simulates the human intestinal barrier. The objective is to understand how bioactive compounds from TNBP can mitigate the effects of AFB1, OTA and ZEN (and their combination) by bioavailability interference, contributing to safer food products and innovative food safety strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!