Recent years have witnessed a renewed interest in PARP-1 inhibitors as promising anticancer agents with multifaceted functions. Particularly exciting developments include the approval of olaparib (Lynparza) for the treatment of refractory ovarian cancer in patients with BRCA1/2 mutations, and the increasing understanding of the polypharmacology of PARP-1 inhibitors. The aim of this review article is to provide the reader with a comprehensive overview of the distinct levels of the polypharmacology of PARP-1 inhibitors, including 1) inter-family polypharmacology, 2) intra-family polypharmacology, and 3) multi-signaling polypharmacology. Progress made in gaining insight into the molecular basis of these multiple target-independent and target-dependent activities of PARP-1 inhibitors are discussed, with an outlook on the potential impact that a better understanding of polypharmacology may have in aiding the explanation as to why some drug candidates work better than others in clinical settings, albeit acting on the same target with similar inhibitory potency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cmdc.201500391 | DOI Listing |
J Immunother
October 2024
Department of Radiation Oncology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an, China.
Colorectal cancer (CRC) ranks third globally in cancer incidence and mortality, posing a significant human concern. Recent advancements in immunotherapy are noteworthy. This study explores immune modulation for CRC treatment.
View Article and Find Full Text PDFMol Pharm
January 2025
Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
As an enzyme that plays an important role in DNA repair, poly(ADP-ribose) polymerase-1 (PARP-1) has become a popular target for cancer therapy. Nuclear medicine molecular imaging technology, supplemented by radiolabeled PARP-1 inhibitors, can accurately determine the expression level of PARP-1 at lesion sites to help patients choose an appropriate treatment plan. In this work, niraparib was modified with a hydrazinonicotinamide (HYNIC) group to generate the ligand NPBHYNIC, which has an affinity (IC) of 450.
View Article and Find Full Text PDFCancer Rep (Hoboken)
January 2025
Département de Biologie, Faculté des Sciences, Université Chouaïb Doukkali, El Jadida, Morocco.
Background: The Ets-1 transcription factor plays a primordial role in regulating the expression of numerous genes implicated in cancer progression. In a previous study, we revealed that poly(ADP-ribose) polymerase-1 (PARP-1) inhibition by PJ-34 results in Ets-1 level increase in cells, which is related with cell death of Ets-1-expressing cancer cells.
Aims: The mechanism of the antitumor effect of PARP-1 inhibition was investigated in the Ets-1-expressing MDA-MB-231 breast cancer cells.
Front Cell Dev Biol
December 2024
Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
Introduction: NF-κB plays a pivotal role in the progression of cancers, including myosarcomas such as fibrosarcoma. Plants possess considerable potential for the provision of chemotherapeutic effects against cancer. The present study assessed, among others, the cytotoxicity, migration capacity and DNA damage induced by several natural compounds (berberine, curcumin, biochanin A, cucurbitacin E (CurE) and phenethyl caffeic acid (CAPE)) in cancer cells (WEHI-164) and normal muscle cells (L6).
View Article and Find Full Text PDFCurr Med Chem
January 2025
3rd Department of Cardiology, General Hospital of Thoracic Diseases 'Sotiria', National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
Arterial hypertension is a silent and progressive disease with deleterious vascular implications on all target organs, including the heart, the brain, the kidneys, and the eyes. Oxidative stress, defined as the overproduction of Reactive Oxygen Species (ROS) over antioxidants, is capable of deteriorating not only the normal endothelial but also the cellular function with further cardiovascular implications. Xanthine oxidase activity, NADPH oxidase overexpression, and ROS production lead to hypertension and high arterial tone, culminating in end-organ damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!