Background/aims: Abnormal visceral sensitivity and disordered motility are common in patients with diabetes mellitus. The purpose of the present study was to investigate whether visceral sensation and bowel motility were altered in a rat model of type 2 diabetes mellitus accompanied by weight loss.
Methods: A type 2 diabetic rat model in adulthood was developed by administrating streptozotocin (STZ; 90 mg/kg, i.p.) to neonatal rats. Eight weeks after STZ administration, rats with blood glucose level of 200 mg/dL or higher were selected and used as diabetic group (n = 35) in this study. Abdominal withdrawal reflex and arterial pulse rate were measured to examine visceral nociception induced by colorectal distension (0.1-1.0 mL). The amplitude, frequency, and area under the curve (AUC) of spontaneous phasic contractions of colonic circular muscles were recorded in vitro to examine colonic motility.
Results: STZ-treated diabetic rats gained significantly less weight for 8 weeks than control (P < 0.01). Forty-eight percent of the diabetic rats showed enhanced visceral nociceptive response to colorectal distension. Diabetic rats did not differ from control rats in colorectal compliance. However, the frequency and AUC, not the amplitude, of colonic spontaneous contraction in vitro was significantly decreased in diabetic rats compared to control rats (P < 0.01 in frequency and P < 0.05 in AUC).
Conclusions: These results demonstrate visceral hypersensitivity and colonic dysmotility in a rat model of type 2 diabetes mellitus accompanied by weight loss.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4622141 | PMC |
http://dx.doi.org/10.5056/jnm15058 | DOI Listing |
Nutrients
January 2025
College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea.
Ice plant () is a vegetable with various therapeutic uses, one of which is its ability to prevent diabetes. The present study examined the insulin secretion effect related to the mechanism of action of ice plant extract (IPE) and its active compound D-pinitol in a rat insulin-secreting β-cell line, INS-1, as well as in diabetic rats. : The glucose-stimulated insulin secretion (GSIS) test and Western blotting were used to measure GSIS.
View Article and Find Full Text PDFNutrients
December 2024
Department of Pharmacognosy, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania.
Background/aim: L. () is an aromatic medicinal species with important nutraceutical potential, having rosmarinic acid (RA) as one of its main metabolites. The present study aims to evaluate the effects of an extract obtained from the leaves of this species and of its main metabolite in improving the streptozotocin-induced damage of hearts and aorta of diabetic rats.
View Article and Find Full Text PDFNutrients
December 2024
Centre for Diabetes, Obesity and Endocrinology Research (CDOER), Westmead Institute for Medical Research, Westmead, Sydney, NSW 2145, Australia.
Background: Recent findings have highlighted that abnormal energy metabolism is a key feature of autosomal-dominant polycystic kidney disease (ADPKD). Emerging evidence suggests that nutritional ketosis could offer therapeutic benefits, including potentially slowing or even reversing disease progression. This systematic review aims to synthesise the literature on ketogenic interventions to evaluate the impact in ADPKD.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
Type 2 diabetes (T2D), the most common form, is marked by insulin resistance and β-cell failure. β-cell dysfunction under high-glucose-high-lipid (HG-HL) conditions is a key contributor to the progression of T2D. This study evaluates the comparative effects of 10 nM semaglutide, 10 nM tirzepatide, and 1 mM metformin, both alone and in combination, on INS-1 β-cell maintenance and function under HG-HL conditions.
View Article and Find Full Text PDFMolecules
December 2024
Department of Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa P. O. Box 9086, Ethiopia.
Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by insulin resistance and impaired beta-cell secretory function. Since existing treatments often present side effects based on different mechanisms, alternative therapeutic options are needed. In this scenario, the present study first evaluates the cytotoxicity of decoctions from the leaves, stems, and roots of L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!