Hepatic lipase deficiency produces glucose intolerance, inflammation and hepatic steatosis.

J Endocrinol

Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain Institute of Health Research-INCLIVAAvenida Menéndez Pelayo, 4, 46010 Valencia, SpainEndocrinology and Nutrition Department Clinic Hospital and Department of MedicineUniversity of Valencia, Valencia, SpainCIBER de Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM)Valencia, SpainDepartment of FarmacologyUniversity of Valencia, Valencia, SpainCentro de Investigación Príncipe FelipeValencia, Spain

Published: December 2015

Metabolic syndrome and type 2 diabetes mellitus constitute a major problem to global health, and their incidence is increasing at an alarming rate. Non-alcoholic fatty liver disease, which affects up to 90% of obese people and nearly 70% of the overweight, is commonly associated with MetS characteristics such as obesity, insulin resistance, hypertension and dyslipidemia. In the present study, we demonstrate that hepatic lipase (HL)-inactivation in mice fed with a high-fat, high-cholesterol diet produced dyslipidemia including hypercholesterolemia, hypertriglyceridemia and increased non-esterified fatty acid levels. These changes were accompanied by glucose intolerance, pancreatic and hepatic inflammation and steatosis. In addition, compared with WT mice, HL(-/-) mice exhibited enhanced circulating MCP1 levels, monocytosis and higher percentage of CD4+Th17+ cells. Consistent with increased inflammation, livers from HL(-/-) mice had augmented activation of the stress SAPK/JNK- and p38-pathways compared with the activation levels of the kinases in livers from WT mice. Analysis of HL(-/-) and WT mice fed regular chow diet showed dyslipidemia and glucose intolerance in HL(-/-) mice without any other changes in inflammation or hepatic steatosis. Altogether, these results indicate that dyslipidemia induced by HL-deficiency in combination with a high-fat, high-cholesterol diet promotes hepatic steatosis and inflammation in mice which are, at least in part, mediated by the activation of the stress SAPK/JNK- and p38-pathways. Future studies are warranted to asses the viability of therapeutic strategies based on the modulation of these kinases to reduce hepatic steatosis associated to lipase dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1530/JOE-15-0219DOI Listing

Publication Analysis

Top Keywords

hepatic steatosis
16
hl-/- mice
16
glucose intolerance
12
hepatic lipase
8
inflammation hepatic
8
mice
8
mice fed
8
high-fat high-cholesterol
8
high-cholesterol diet
8
activation stress
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!