The aim of this study was to characterize protein aggregation during reconstitution of a highly concentrated solution of lyophilized L-asparaginase (L-ASP). The effect of the preparation method on L-ASP aggregation using siliconized or non-siliconized syringes and the effect of storage after preparation were evaluated by far-UV circular dichroism spectroscopy, Raman microscopy, flow cytometry, and flow particle image analysis. To investigate the effect of syringe type in combination with shaking and headspace air on L-ASP aggregation, four kinds of L-ASP in 5% glucose solutions were prepared (in the presence or absence of silicon oil and headspace air). Slight differences in L-ASP secondary structure were observed between the siliconized and non-siliconized syringe systems before shaking. Large numbers of sub-visible (0.1-100 µm) and submicron (0.1-1 µm) particles were formed by preparation with siliconized syringes and the combination of shaking and headspace air. The number of aggregated particles was not decreased with increased storage time. The Raman microscopy, flow cytometry and flow particle image results suggested that L-ASP interacted with silicone oil, which induced aggregation. Nevertheless, sub-visible and submicron particles were also formed with non-siliconized syringes. However, using non-siliconized syringes, the number of aggregated particles decreased with storage. No changes in particle character were observed before or after shaking with headspace air in non-siliconized syringes, indicating that soluble aggregates formed and dissolved with storage. Silicone oil in syringes, in combination with shaking and headspace air, strongly affected the aggregation of lyophilized L-ASP formulations during preparation.

Download full-text PDF

Source
http://dx.doi.org/10.1248/cpb.c15-00242DOI Listing

Publication Analysis

Top Keywords

headspace air
24
shaking headspace
20
non-siliconized syringes
16
combination shaking
12
siliconized syringes
8
protein aggregation
8
l-asp aggregation
8
siliconized non-siliconized
8
raman microscopy
8
microscopy flow
8

Similar Publications

Release of Bisphenol A and Other Volatile Chemicals from New Epoxy Drinking Water Pipe Liners: The Role of Manufacturing Conditions.

Environ Sci Technol

January 2025

Lyles School of Civil Engineering, Division of Environmental and Ecological Engineering, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.

Cured-in-place-pipe (CIPP) technology has begun to be adopted for drinking water pipe repairs, and limited information exists about its drinking water quality impacts. CIPP involves the manufacture of a new plastic pipe inside a buried damaged pipe. In this study, the chemical composition of the raw materials and CIPP water quality impacts were examined.

View Article and Find Full Text PDF

The effect of ozone treatment on the sensory quality, aroma compounds, phytosterols, and phytosterol oxidation products (POP) in stored plant oils was studied. Cold-pressed flaxseed, cold-pressed rapeseed, and refined rapeseed oils were treated with ozone, air, and nitrogen, then subjected to accelerated storage at 60 °C for 6 days. The sensory evaluation revealed that ozone significantly influenced the sensory profile, with notable cucumber and green-grassy aromas.

View Article and Find Full Text PDF

An exploratory study of volatile and semi-volatile organic compounds in PM atmospheric particles from an outdoor environment in Brazil.

Environ Sci Pollut Res Int

December 2024

Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, 6627, 370901, Brazil.

The development of methods for determining volatile and semi-volatile organic compounds in public spaces has become necessary to identify potential health and environmental risks. This study presents a practical methodology for sampling, extracting, detecting, and identifying these compounds in a vehicular traffic region in Belo Horizonte, Brazil. The methodology uses direct-immersion solid phase microextraction (DI-SPME) and static headspace (SHS) to extract SVOCs/VOCs.

View Article and Find Full Text PDF

Rationale: The stable isotope compositions of atmospheric CO can provide useful insight into various geochemical processes and carbon cycles on Earth, which is critical for understanding of Earth's changing climate. Here, we present a simple and cost-effective analytical method for the collection and measurement of carbon and oxygen isotope compositions of atmospheric CO.

Methods: Air samples of ~150 mL were collected individually or collectively using our simple active air collection system and then extracted on a vacuum purification line to remove noncondensable gases and atmospheric water vapor.

View Article and Find Full Text PDF

An increasing number of pharmaceutical products require deep cold storage at cryogenic conditions, approximately -150°C to -190°C, to maintain stability and/or activity. Previous work has revealed that, at these extreme conditions, a typical pharmaceutical package configuration (vial, stopper, crimp cap) may lose container closure integrity (CCI) due to both the glass transition temperature (-55°C to -70°C) of the rubber stopper used to seal the vial and the different thermal expansion coefficients of the primary packaging components. Importantly, this type of temporary breach in CCI frequently reseals itself when the vial is brought back to ambient temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!