Drugs of abuse can "hijack" synaptic plasticity, a physiological basis of learning and memory, establishing maladaptations that can promote drug addiction. A wealth of data supports the existence and importance of neuroadaptations in excitatory neurotransmission upon drug exposure. Recent discoveries, however, have shown that inhibitory neurotransmission mediated by G protein-gated inwardly rectifying potassium (K(+)) (GIRK/Kir3) channels is also subject to adaptation triggered by exposure to drugs of abuse. GIRK channels are expressed in neuronal populations relevant to reward and reward-related behaviors, where their activation by neurotransmitters such as GABA, dopamine, and adenosine reduces neuronal excitability. Studies in animal models have implicated GIRK channels in a number of behaviors including reward. Drugs of abuse also affect the inhibitory neurotransmission mediated by GIRK channels. These changes might be important for the development, maintenance, or relapse of addiction, making GIRK channels promising targets for novel addiction therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.irn.2015.05.011 | DOI Listing |
J Nat Prod
January 2025
Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States.
Cannabidiol (CBD) is a natural product associated with a wide range of biological and therapeutic activities. Despite the widespread cultural acceptance of CBD as a medicinal agent, much remains to be determined regarding its precise mechanism(s) of action in treating multiple conditions. CBD has been shown to promiscuously interact with several neurological targets with varying affinities.
View Article and Find Full Text PDFBr J Pharmacol
January 2025
Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel.
Background And Purpose: The antiepileptic drug ethosuximide (ETX) suppresses epileptiform activity in a mouse model of GNB1 syndrome, caused by mutations in Gβ protein, likely through the inhibition of G-protein gated K (GIRK) channels. Here, we investigated the mechanism of ETX inhibition (block) of different GIRKs.
Experimental Approach: We studied ETX inhibition of GIRK channels expressed in Xenopus oocytes with or without their physiological activator, the G protein subunit dimer Gβγ.
Proc Natl Acad Sci U S A
January 2025
Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY 10065.
We examine the role of higher-order transient structures (HOTS) in M2R regulation of GIRK channels. Electron microscopic membrane protein location maps show that both proteins form HOTS that exhibit a statistical bias to be near each other. Theoretical calculations and electrophysiological measurements suggest that channel activity is isolated near larger M2R HOTS.
View Article and Find Full Text PDFElife
December 2024
Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States.
Hypothalamic kisspeptin (Kiss1) neurons are vital for pubertal development and reproduction. Arcuate nucleus Kiss1 (Kiss1) neurons are responsible for the pulsatile release of gonadotropin-releasing hormone (GnRH). In females, the behavior of Kiss1 neurons, expressing Kiss1, neurokinin B (NKB), and dynorphin (Dyn), varies throughout the ovarian cycle.
View Article and Find Full Text PDFNeuropharmacology
March 2025
Department of Neurology, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY, 10032-3784, USA. Electronic address:
Tumor associated epilepsy is a common and debilitating co-morbidity of brain tumors, for which inadequate treatments are available. Additionally, animal models suggest a potential link between seizures and tumor progression. Our group has previously described a mouse model of diffusely infiltrating glioma and associated chronic epilepsy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!