Methionine bound to Pd/γ-Al2O3 catalysts studied by solid-state (13)C NMR.

Solid State Nucl Magn Reson

Department of Chemistry, Iowa State University, Ames, IA 50011, United States; Department of Chemistry, Brandeis University, Waltham, MA 02453, United States. Electronic address:

Published: November 2015

The chemisorption and breakdown of methionine (Met) adsorbed on Pd/γ-Al2O3 catalysts were investigated by solid-state NMR. (13)C-enriched Met (ca. 0.4mg) impregnated onto γ-Al2O3 or Pd/γ-Al2O3 gives NMR spectra with characteristic features of binding to γ-Al2O3, to Pd nanoparticles, and oxidative or reductive breakdown of Met. The SCH3 groups of Met showed characteristic changes in chemical shift on γ-Al2O3 (13ppm) vs. Pd (19ppm), providing strong evidence for preferential binding to Pd, while the NC carbon generates a small resonance at 96ppm assigned to a distinct nonprotonated species bound to O or Pd. Additionally, NMR shows that the SCH3 groups of Met are mobile on γ-Al2O3 but immobilized by binding to Pd particles; on small Pd particles (ca. 4nm), the NCH groups undergo large-amplitude motions. In a reducing environment, Met breaks down by C-S bond cleavage followed by formation of C2-C4 organic acids. The SCH3 signal shifts to 22ppm, which is likely the signature of the principal species responsible for strong catalyst inhibition. These experiments demonstrate that solid-state magic-angle spinning NMR of (13)C-enriched Met can be a sensitive probe to investigate catalyst surfaces and characterize catalyst inhibition both before reaction and postmortem.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ssnmr.2015.09.007DOI Listing

Publication Analysis

Top Keywords

pd/γ-al2o3 catalysts
8
nmr 13c-enriched
8
13c-enriched met
8
sch3 groups
8
groups met
8
catalyst inhibition
8
met
7
nmr
5
methionine bound
4
bound pd/γ-al2o3
4

Similar Publications

Rare-earth oxide promoted Pd electrocatalyst for formic acid oxidation.

Dalton Trans

January 2025

Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.

The development of Pd-based materials with high activity and long-term stability is crucial for their practical applications as an anode catalyst in direct formic acid fuel cells. Herein, we reveal that the catalytic activity of Pd towards formic acid oxidation can be enhanced by incorporation of a series of rare-earth oxides, including ScO, CeO, LaO, and PrO. For example, Pd nanoparticles incorporated with ScO supported on nitrogen-doped reduced graphene oxide (Pd-ScO/N-rGO-, = 1/3, 1/2, 2/3, 1, and 3/2; "" denotes the molar ratio of Pd : Sc) can be obtained using a sodium borohydride reduction method.

View Article and Find Full Text PDF

While synthesizing circular polymers with telechelic polyolefin building blocks recently emerged as a promising strategy for addressing conventional polyethylenes' sustainability challenges, the lack of telechelic PP (PP) with sufficient difunctional purity for polycondensation has been limiting the development of circular polypropylenes with PP-like structures and properties. Here we described a combined approach of coordinative chain transfer polymerization and transition-metal-catalyzed quenching reaction with various acyl chlorides, affording PPs with a high difunctional ratio (up to ∼99%) and broad end functional group scope. The steric effect of polymeryl-Zn species and the role of Pd catalyst were revealed by DFT.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) are crystalline porous materials bearing well-ordered two- or three-dimensional molecular tectons in their polymeric skeletal framework. COFs are structurally robust as well as physiochemically stable. Currently, these are being developed for their use as "heterogeneous catalysts" for various organic transformations.

View Article and Find Full Text PDF

Although nickel is found in the active sites of a class of superoxide dismutase (SOD), nickel complexes with non-peptidic ligands normally do not catalyze superoxide degradation, and none has displayed activity comparable to those of the best manganese-containing SOD mimics. Here, we find that nickel complexes with polydentate quinol-containing ligands can exhibit catalytic activity comparable to those of the most efficient manganese-containing SOD mimics. The nickel complexes retain a significant portion of their activity in phosphate buffer and under operando conditions and rely on ligand-centered redox processes for catalysis.

View Article and Find Full Text PDF

An efficient Suzuki cross-coupling reaction under continuous flow conditions was developed utilizing an immobilized solid supported catalyst consisting of bimetallic nickel-palladium nanoparticles (Ni-Pd/MWCNTs). In this process, the reactants can be continuously pumped into a catalyst bed at a high flow rate of 0.6 mL/min and the temperature of 130 °C while the Suzuki products are recovered in high steady-state yields for prolonged continuous processing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!