Multicomponent Coculture System of Cancer Cells and Two Types of Stromal Cells for In Vitro Evaluation of Anticancer Drugs.

Tissue Eng Part C Methods

2 Life Science Laboratory, Nitta Gelatin, Inc. , Osaka, Japan .

Published: January 2016

In vitro evaluation of anticancer drugs using cancer cells has long been performed for the development of novel drugs and the selection of effective drugs for different patients. Recent studies have suggested that tumor stromal cells affect the drug sensitivity of cancer cells; however, most conventional culture systems for drug evaluation lack stromal cells. In this study, we fabricated a multicomponent coculture system that takes account of cancer-stroma interactions for drug evaluation. In this system, small-cell and nonsmall-cell lung cancer cells embedded in collagen gel were cocultured with two types of stromal cells, including stromal fibroblasts and proinflammatory cytokine-secreting monocytes, thus recreating the in vivo cancer microenvironment. Cancer drug sensitivity was significantly altered by the presence of stromal cells. Fibroblasts induced resistance of cancer cells to anticancer drugs. Monocytes induced the upregulation of thymidine phosphorylase in cancer cells, promoting the conversion of an anticancer prodrug to a cytotoxic drug, and consequently enhanced the sensitivity of cancer cells to the anticancer prodrug. These results clearly show the importance of incorporating stromal cells into culture systems for drug evaluation. Our system will help to improve the accuracy of in vitro drug evaluation and provide useful information for the in vitro recreation of cancer microenvironments.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEC.2015.0188DOI Listing

Publication Analysis

Top Keywords

cancer cells
28
stromal cells
24
drug evaluation
16
cells
13
anticancer drugs
12
cancer
10
multicomponent coculture
8
coculture system
8
types stromal
8
vitro evaluation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!