The solvation of caffeine in water is examined with neutron diffraction experiments at 353 K. The experimental data, obtained by taking advantage of isotopic H/D substitution in water, were analyzed by empirical potential structure refinement (EPSR) in order to extract partial structure factors and site-site radial distribution functions. In parallel, molecular dynamics (MD) simulations were carried out to interpret the data and gain insight into the intermolecular interactions in the solutions and the solvation process. The results obtained with the two approaches evidence differences in the individual radial distribution functions, although both confirm the presence of caffeine stacks at this temperature. The two approaches point to different accessibility of water to the caffeine sites due to different stacking configurations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.5b09204 | DOI Listing |
Phys Chem Chem Phys
January 2025
Department of Chemistry and Biochemistry, Northern Illinois University, 1425 W. Lincoln Highway, DeKalb, IL, USA.
Room temperature ionic liquids (RTILs) are interesting due to their myriad uses in fields such as catalysis and electrochemistry. Their properties are intimately related to their structures, yet structural understanding is difficult to achieve. This work presents a derivation of an approximate expression for the radial distribution function, ().
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China.
The development of monodisperse hybrid silica microspheres with highly regular pore structure and uniform distribution of functional groups have significant value in the biomolecular separation field. In this work, the short range ordered pore channels are precisely constructed onto the non-porous silica microsphere surface by a bi-phase assembly method, and the cylindrical silica channel introduced a plethora of vinyl groups by "one-pot" co-condensation to form vinyl hybrid silica shell. As hydrophilic interaction chromatography (HILIC) stationary phase, the vinyl hybrid core-shell silica microsphere is simply modified with zwitterion glutathione (SiO@SiO-GSH), in which the HILIC enrichment process is significantly shortened due to its specific porous characteristics.
View Article and Find Full Text PDFPLoS One
January 2025
Laboratoire Matériaux Optiques, Photonique et Systèmes (LMOPS), Université de Lorraine & CentraleSupélec, Metz, France.
Optimizing energy resources is a major priority these days. Increasing household energy demand often leads to the deterioration of poorly sized distribution networks. This paper presents a method for energy compensation and optimization in radial distribution systems (ORDS).
View Article and Find Full Text PDFJ Mol Model
January 2025
Department of Chemistry, Birla Institute of Technology and Science Pilani - K. K. Birla Goa Campus, Zuarinagar, 403726, Goa, India.
Context: There has been growing interest in amino acid ionic liquids because of their low-cost synthesis and superior biodegradability and biocompatibility compared to traditional ionic liquids. In this study, we have investigated the structure and dynamics of three ionic liquids consisting of N-butyl N-methyl piperidinium [Pip] cation with amino acid (lysine [Lys], histidine [His], and arginine [Arg]) anions. The radial distribution functions, the spatial distribution functions, and the coordination numbers have been used to analyze the structure in the bulk phase.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China.
The formation of natural gas hydrates presents significant economic and safety challenges to the petroleum and gas industry, necessitating the development of effective prevention strategies. This study investigates an environmentally sustainable Tenebrio molitor antifreeze protein (TmAFP) modified to be a potential kinetic hydrate inhibitor. The aim of this study was to enhance the inhibitory activity of TmAFP by systematically substituting threonine (Thr) residues with glycine (Gly), alanine (Ala), or serine (Ser) at positions 29, 39, and 53.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!