Cortical reorganization subsequent to post-stroke motor rehabilitative training (RT) has been extensively examined in animal models and humans. However, similar studies focused on the effects of motor training after traumatic brain injury (TBI) are lacking. We previously reported that after a moderate/severe TBI in adult male rats, functional improvements in forelimb use were accomplished only with a combination of skilled forelimb reach training and aerobic exercise, with or without nonimpaired forelimb constraint. Thus, the current study was designed to examine the relationship between functional motor cortical map reorganization after experimental TBI and the behavioral improvements resulting from this combinatorial rehabilitative regime. Adult male rats were trained to proficiency on a skilled reaching task, received a unilateral controlled cortical impact (CCI) over the forelimb area of the caudal motor cortex (CMC). Three days post-CCI, animals began RT (n = 13) or no rehabilitative training (NoRT) control procedures (n = 13). The RT group participated in daily skilled reach training, voluntary aerobic exercise, and nonimpaired forelimb constraint. This RT regimen significantly improved impaired forelimb reaching success and normalized reaching strategies, consistent with previous findings. RT also enlarged the area of motor cortical wrist representation, derived by intracortical microstimulation, compared to NoRT. These findings indicate that sufficient RT can greatly improve motor function and improve the functional integrity of remaining motor cortex after a moderate/severe CCI. When compared with findings from stroke models, these findings also suggest that more intense RT may be needed to improve motor function and remodel the injured cortex after TBI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841002 | PMC |
http://dx.doi.org/10.1089/neu.2015.4136 | DOI Listing |
Exp Neurobiol
December 2024
Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Korea.
Research on brain aging using resting-state functional magnetic resonance imaging (rs-fMRI) has typically focused on comparing "older" adults to younger adults. Importantly, these studies have often neglected the middle age group, which is also significantly impacted by brain aging, including by early changes in motor, memory, and cognitive functions. This study aims to address this limitation by examining the resting state networks in middle-aged adults via an exploratory whole-brain ROI-to-ROI analysis.
View Article and Find Full Text PDFNeurology
January 2025
The Dubowitz Neuromuscular Centre, Developmental Neurosciences Department, University College London, Great Ormond Street Institute of Child Health, United Kingdom.
Background And Objectives: Safety and efficacy of IV onasemnogene abeparvovec has been demonstrated for patients with spinal muscular atrophy (SMA) weighing <8.5 kg. SMART was the first clinical trial to evaluate onasemnogene abeparvovec for participants weighing 8.
View Article and Find Full Text PDFCell-type-specific activation of parvalbumin (PV)-expressing neurons in the external globus pallidus (GPe) through optogenetics has shown promise in facilitating long-lasting movement dysfunction recovery in mice with Parkinson's disease. However, its translational potential is hindered by adverse effects stemming from the invasive implantation of optical fibers into the brain. In this study, we have developed a non-invasive optogenetics approach, utilizing focused ultrasound-triggered mechanoluminescent nanotransducers to enable remote photon delivery deep in the brain for genetically targeted neuromodulation.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
School of Systems Science, Beijing Normal University, Beijing, 100875 China.
Hippocampus in the mammalian brain supports navigation by building a cognitive map of the environment. However, only a few studies have investigated cognitive maps in large-scale arenas. To reveal the computational mechanisms underlying the formation of cognitive maps in large-scale environments, we propose a neural network model of the entorhinal-hippocampal neural circuit that integrates both spatial and non-spatial information.
View Article and Find Full Text PDFJ Neurochem
January 2025
Department of Pathology, School of Veterinary Medicine, University of São Paulo, Sao Paulo, Brazil.
Autism spectrum disorder (ASD) is a complex developmental disorder characterized by several behavioral impairments, especially in socialization, communication, and the occurrence of stereotyped behaviors. In rats, prenatal exposure to valproic acid (VPA) induces autistic-like behaviors. Previous studies by our group have suggested that the autistic-like phenotype is possibly related to dopaminergic system modulation because tyrosine hydroxylase (TH) expression was affected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!