The addition of nanoparticles in dynamically asymmetric LCST blends is used to induce preferred phase-separating morphology by tuning the dynamic asymmetry, and to control the kinetics of phase separation by slowing down (or even arresting) the domain growth. For this purpose, we used hydrophobic and hydrophilic fumed silica, which self-assemble during phase separation into the bulk of the slow (PS-rich) and fast (PVME-rich) dynamic phases, respectively. Both types of nanoparticles slow down considerably nucleation and growth (NG), spinodal decomposition (SD), and viscoelastic phase separation (VPS) at volume fractions as low as 0.5%. Remarkably, beyond a critical volume fraction of hydrophobic nanosilica thermodynamically controlled phase separation mechanisms (NG and SD) change to the VPS mechanism due to enhanced dynamic asymmetry. However, in the presence of hydrophilic nanosilica dynamic asymmetry decreases and beyond a critical particle volume fraction a transition from the VPS to the SD mechanism is observed. Phase separation is arrested at 2% nanoparticle loading, and VPS percolating networks as well as co-continuous SD structures are completely stabilized by hydrophobic silica or hydrophilic silica, respectively. Electron microscopy images confirm that double percolated structures are induced in the presence of 2 vol% of either hydrophobic or hydrophilic nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cp04042f | DOI Listing |
Adv Biotechnol (Singap)
March 2024
Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, GuangZhou, GuangDong, China.
Biomolecular condensates, also referred to as membrane-less organelles, function as fundamental organizational units within cells. These structures primarily form through liquid-liquid phase separation, a process in which proteins and nucleic acids segregate from the surrounding milieu to assemble into micron-scale structures. By concentrating functionally related proteins and nucleic acids, these biomolecular condensates regulate a myriad of essential cellular processes.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France.
Large vertebrate genomes duplicate by activating tens of thousands of DNA replication origins, irregularly spaced along the genome. The spatial and temporal regulation of the replication process is not yet fully understood. To investigate the DNA replication dynamics, we developed a methodology called RepliCorr, which uses the spatial correlation between replication patterns observed on stretched single-molecule DNA obtained by either DNA combing or high-throughput optical mapping.
View Article and Find Full Text PDFAnal Chem
January 2025
Waters Corporation, 34 Maple St., Milford, Massachusetts 01757, United States.
Therapeutic drugs and multivalent vaccines based on the delivery of mRNA via lipid nanoparticle (LNP) technologies are expected to dominate the biopharmaceutical industry landscape in the coming years. Many of these innovative therapies include several nucleic acid components (e.g.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China.
Understanding the interaction between nanomaterials and cellular structures is crucial for nanoparticle applications in biomedicine. We have identified a subtype of stress granules, called nanomaterial-provoked stress granules (NSGs), induced by gold nanorods (AuNRs). These NSGs differ from traditional SGs in their physical properties and biological functions.
View Article and Find Full Text PDFAcc Mater Res
January 2025
School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30322, United States.
Increasing demand for high-purity fine chemicals and a drive for process intensification of large-scale separations have driven significant work on the development of highly engineered porous materials with promise for sorption-based separations. While sorptive separations in porous materials offer energy-efficient alternatives to longstanding thermal-based methods, the particulate nature of many of these sorbents has sometimes limited their large-scale deployment in high-throughput applications such as gas separations, for which the necessary high feed flow rates and gas velocities accrue prohibitive operational costs. These processability limitations have been historically addressed through powder shaping methods aimed at the fabrication of structured sorbent contactors based on pellets, beads or monoliths, commonly obtained as extrudates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!