Potential application of a bioemulsifier-producing actinobacterium for treatment of vinasse.

Chemosphere

Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pje. Caseros, 4000, Tucumán, Argentina; Facultad de Ciencias de la Salud, Universidad del Norte Santo Tomás de Aquino-Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, 4000, Tucumán, Argentina.

Published: February 2016

AI Article Synopsis

  • Vinasse is a wastewater produced during ethyl alcohol production, posing environmental pollution risks.
  • Researchers are studying the actinobacterium Streptomyces sp. MC1, which shows promise in treating vinasse and removing harmful metals effectively.
  • The strain can grow in high vinasse concentrations and significantly improves the quality of treated vinasse, demonstrating potential for biotechnological applications like producing bioemulsifiers.

Article Abstract

Vinasse is a complex effluent created during production of ethyl alcohol, which can present serious pollution hazard in areas where it is discharged. A variety of technologies, many based upon recovery of the effluent via microbial pathways, are continually being evaluated in order to mitigate the pollution potential of vinasse. The present work reports on initial advances related to the effectiveness of the actinobacterium Streptomyces sp. MC1 for vinasse treatment. Alternative use of raw vinasse as a substrate for producing metabolites of biotechnological interest such as bioemulsifiers, was also evaluated. The strain was able to grow at very high vinasse concentrations (until 50% v/v) and remove over 50% of the biodegradable organic matter in a time period as short as 4 d. Potentially toxic metals such as Mn, Fe, Zn, As, and Pb were also effectively removed during bacterial growth. Decrease in the pollution potential of treated vinasse compared to raw effluent, was reflected in a significant increase in the vigour index of Lactuca sativa (letucce) used as bioremediation indicator. Finally, significant bioemulsifier production was detected when this strain was incubated in a vinasse-based culture medium. These results represent the first advances on the recovery and re-valuation of an actual effluent, by using an actinobacterium from our collection of cultures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2015.09.064DOI Listing

Publication Analysis

Top Keywords

pollution potential
8
vinasse
7
potential application
4
application bioemulsifier-producing
4
bioemulsifier-producing actinobacterium
4
actinobacterium treatment
4
treatment vinasse
4
vinasse vinasse
4
vinasse complex
4
effluent
4

Similar Publications

Background: Chronic obstructive pulmonary disease (COPD) primarily originates from exposure to tobacco smoke, although factors, such as air pollution and exposure to chemicals, also play a role. One of the primary treatments for COPD is oxygen therapy, which helps manage dyspnea and improve survival rates. Mobile health (mHealth) technologies have demonstrated significant potential in monitoring patients with chronic diseases, offering new avenues for enhancing patient care and disease management.

View Article and Find Full Text PDF

Ancient texts and archaeological evidence indicate substantial lead exposure during antiquity that potentially impacted human health. Although lead exposure routes were many and included the use of glazed tablewares, paints, cosmetics, and even intentional ingestion, the most significant for the nonelite, rural majority of the population may have been through background air pollution from mining and smelting of silver and lead ores that underpinned the Roman economy. Here, we determined potential health effects of this air pollution using Arctic ice core measurements of Roman-era lead pollution, atmospheric modeling, and modern epidemiology-based relationships between air concentrations, blood lead levels (BLLs), and cognitive decline.

View Article and Find Full Text PDF

Microplastics (MPs) and per- and polyfluoroalkyl substances (PFASs) are ubiquitous contaminants in environments, yet their co-occurrence and interactions remain insufficiently understood. In this study, we confirmed the concurrent presence of MPs and PFASs and their distinct distribution patterns in a wastewater treatment plant (WWTP) through a comprehensive sampling and analysis effort. Significant correlations ( < 0.

View Article and Find Full Text PDF

Persistent microbial infections and idiopathic pulmonary fibrosis - an insight into pathogenesis.

Front Cell Infect Microbiol

December 2024

Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States.

Interstitial lung disease (ILD) is characterized by chronic inflammation and scarring of the lungs, of which idiopathic pulmonary fibrosis (IPF) is the most devastating pathologic form. Idiopathic pulmonary fibrosis pathogenesis leads to loss of lung function and eventual death in 50% of patients, making it the leading cause of ILD-associated mortality worldwide. Persistent and subclinical microbial infections are implicated in the acute exacerbation of chronic lung diseases.

View Article and Find Full Text PDF

Background: Atmospheric ozone is a common air pollutant with known impacts on maternal and fetal health. However, the relationship between gestational ozone exposure and susceptibility to respirovirus infection remains unclear. This study aims to assess the association between longitudinal ozone exposure during pregnancy and COVID-19 risk in late gestation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!