In this Letter, we report for the first time, to the best of our knowledge, continuous-wave laser background illumination (BGI) as a simple and yet useful tool to tune nanosecond transient absorption (TA) in a-Ge25As10Se65 thin films. In our experiments, we observed remarkable blueshift in TA as a function of the BGI intensity. Strikingly, relaxations of TA in background-illuminated samples are much faster than the as-prepared samples. This observation provides new insights into the bond-breaking mechanism. Further, decay time constants of TA are wavelength dependent, which signifies that excited carriers have a longer lifetime in deep traps than in shallow traps.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.40.004512DOI Listing

Publication Analysis

Top Keywords

nanosecond transient
8
transient absorption
8
thin films
8
background illumination
8
tuning nanosecond
4
absorption a-ge₂₅as₁₀se₆₅
4
a-ge₂₅as₁₀se₆₅ thin
4
films background
4
illumination letter
4
letter report
4

Similar Publications

Given their molecular properties and electronic structure, graphyne and graphdiyne are promising materials with numerous applications in different fields of material science. Dehydrobenzoannules (DBAs) are candidates that can serve as building blocks for synthesizing and designing new 2D carbon allotropes; however, only a few graphynes have been produced on a practical scale. Herein, we present our investigation of three DBAs, which serve as a model to understand the relationship between the structure and property, contributing to 2D carbon allotropes' rational design and synthetic effort.

View Article and Find Full Text PDF

Monolayer MoS is an effective electrocatalyst for the hydrogen evolution reaction (HER). Despite significant efforts to optimize the active sites, its catalytic performance still falls short of theoretical predictions. One key factor that has often been overlooked is the electron injection from the conductive substrate into the MoS.

View Article and Find Full Text PDF

Quantum magnetometry of transient signals with a time resolution of 1.1 nanoseconds.

Nat Commun

January 2025

Department of Physics, ETH Zürich, Otto-Stern-Weg 1, 8093, Zürich, Switzerland.

Quantum magnetometers based on spin defects in solids enable sensitive imaging of various magnetic phenomena, such as ferro- and antiferromagnetism, superconductivity, and current-induced fields. Existing protocols primarily focus on static fields or narrow-band dynamical signals, and are optimized for high sensitivity rather than fast time resolution. Here, we report detection of fast signal transients, providing a perspective for investigating the rich dynamics of magnetic systems.

View Article and Find Full Text PDF

The behavior of triple-cation mixed halide perovskite solar cells (PSCs) under ultrashort laser pulse irradiation at varying fluences is investigated, with a focus on local heating effects observed in femtosecond transient absorption (TA) studies. The carrier cooling time constant is found to increase from 230 fs at 2 µJ cm⁻ to 1.3 ps at 2 mJ cm⁻ while the charge population decay accelerates from tens of nanoseconds to the picosecond range within the same fluence range.

View Article and Find Full Text PDF

Nanosecond Nanothermometry in an Electron Microscope.

Nano Lett

January 2025

University Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France.

Thermal transport in nanostructures plays a critical role in modern technologies. As devices shrink, techniques that can measure thermal properties at nanometer and nanosecond scales are increasingly needed to capture transient, out-of-equilibrium phenomena. We present a novel pump-probe photon-electron method within a scanning transmission electron microscope (STEM) to map temperature dynamics with unprecedented spatial and temporal resolutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!