Highly tunable optical transmission through one-dimensional gold gratings patterned on top of a film of the phase transition material, vanadium dioxide (VO2), is demonstrated. Dense electrical integration is enabled by grating features that also function as electrical contacts to the VO2. Extraordinary optical transmission is observed in the VO2 insulator phase, and the optical transmission is extinguished by up to about 6 dB in a 170 nm thick VO2 film. Measurements of gratings with varying duty cycles demonstrate the dependence of the optical transmission and tuning on the device geometry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.40.004408 | DOI Listing |
Sensors (Basel)
January 2025
Department of Applied Physics and Science Education, Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
The design of optical sensors aims at providing, among other things, the highest precision in the determination of the target measurand. Many sensor systems rely on a spectral transducer to map changes in the measurand into spectral shifts of a resonance peak in the reflection or transmission spectrum, which is measured by a readout device (e.g.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy & Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
With the rapid advancement of information technology, the data demands in transmission rates, processing speed, and storage capacity have been increasing significantly. However, silicon electro-optic modulators, characterized by their weak electro-optic effect, struggle to balance modulation efficiency and bandwidth. To overcome this limitation, we propose an electro-optic modulator based on an all-fiber micro-ring resonator and a p-Si/n-ITO heterojunction, achieving high modulation efficiency and large bandwidth.
View Article and Find Full Text PDFInsects
January 2025
Council for Agricultural Research and Economics, Research Centre for Engineering and Agro-Food Processing, Via della Pascolare 16, 00015 Monterotondo, Italy.
Beekeeping is a crucial agricultural practice that significantly enhances environmental health and food production through effective pollination by honey bees. However, honey bees face numerous threats, including exotic parasites, large-scale transportation, and common agricultural practices that may increase the risk of parasite and pathogen transmission. A major threat is the mite, which feeds on honey bee fat bodies and transmits viruses, leading to significant colony losses.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Engineering School of Networks & Telecommunications, Jinling Institute of Technology, Nanjing 211169, China.
Adaptive optics (AO) systems are capable of correcting wavefront aberrations caused by transmission media or defects in optical systems. The deformable mirror (DM) plays a crucial role as a component of the adaptive optics system. In this study, our focus is on analyzing the ability of a 97-element MEMS (Micro-Electro-Mechanical System) DM to correct blurred images of extended sources affected by atmospheric turbulence.
View Article and Find Full Text PDFNanotechnology
January 2025
Centre for Analysis and Synthesis, NanoLund, Lund University, Box 124, Lund, 221 00, SWEDEN.
Developing a reliable procedure for the growth of III-V nanowires (NW) on silicon (Si) substrates remains a significant challenge, as current methods rely on trial-and-error approaches with varying interpretations of critical process steps such as sample preparation, Au-Si alloy formation in the growth reactor, and nanowire alignment. Addressing these challenges is essential for enabling high-performance electronic and optoelectronic devices that combine the superior properties of III-V NW semiconductors with the well-established Si-based technology. Combining conventional scalable growth methods, such as Metalorganic Chemical Vapor Deposition (MOCVD) with in situ characterization using Environmental Transmission Electron Microscopy (ETEM-MOCVD) enables a deeper understanding of the growth dynamics, if that knowledge is transferable to the scalable processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!