An off-the-shelf integrated microfluidic device comprising self-assembled monolayers for protein array experiments.

Biomicrofluidics

Mina and Everard Goodman Life Science Faculty and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel.

Published: September 2015

Microfluidic-based protein arrays are promising tools for life sciences, with increased sensitivity and specificity. One of the drawbacks of this technology is the need to create fresh surface chemistry for protein immobilization at the beginning of each experiment. In this work, we attempted to include the process of surface functionalization as part of the fabrication of the device, which would substitute the time consuming step of surface functionalization at the beginning of each protein array experiment. To this end, we employed a novel surface modification using self-assembled monolayers (SAMs) to immobilize biomolecules within the channels of a polydimethylsiloxane (PDMS) integrated microfluidic device. As a model, we present a general method for depositing siloxane-anchored SAMs, with 1-undecyl-thioacetate-trichlorosilane (C11TA) on the silica surfaces. The process involved developing PDMS-compatible conditions for both SAM deposition and functional group activation. We successfully demonstrated the ability to produce, within an integrated microfluidic channel, a C11TA monolayer with a covalently conjugated antibody. The antibody could then bind its antigen with a high signal to background ratio. We further demonstrated that the antibody was still active after storage of the device for a week. Integration of the surface chemistry into the device as part of its fabrication process has potential to significantly simplify and shorten many experimental procedures involving microfluidic-based protein arrays. In turn, this will allow for broader dissemination of this important technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4575326PMC
http://dx.doi.org/10.1063/1.4930982DOI Listing

Publication Analysis

Top Keywords

integrated microfluidic
12
microfluidic device
8
self-assembled monolayers
8
protein array
8
microfluidic-based protein
8
protein arrays
8
surface chemistry
8
surface functionalization
8
device
5
protein
5

Similar Publications

Integrating Particle Motion Tracking into Thermal Gel Electrophoresis for Label-Free Sugar Sensing.

ACS Sens

January 2025

Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States.

Bioanalytical sensors are adept at quantifying target analytes from complex sample matrices with high sensitivity, but their multiplexing capacity is limited. Conversely, analytical separations afford great multiplexing capacity but typically require analyte labeling to increase sensitivity. Here, we report the development of a separation-based sensor to sensitively quantify unlabeled polysaccharides using particle motion tracking within a microfluidic electrophoresis platform.

View Article and Find Full Text PDF

Rapid and accurate molecular diagnostics are crucial for preventing the global spread of emerging infectious diseases. However, the current gold standard for nucleic acid detection, reverse transcription polymerase chain reaction (RT-PCR), relies heavily on traditional magnetic beads or silica membranes for nucleic acid extraction, resulting in several limitations, including time-consuming processes, the need for trained personnel, and complex equipment. Therefore, there is an urgent need for fully integrated nucleic acid detection technologies that are simple to operate, rapid, and highly sensitive to meet unmet clinical needs.

View Article and Find Full Text PDF

An integrated magnetoimpedance biosensor microfluidic magnetic platform for the evaluation of the cardiac marker cTnI.

Anal Methods

January 2025

Microelectronic Research & Development Center, School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.

An integrated magnetoimpedance (MI) biosensor microfluidic magnetic platform was proposed for the evaluation of the cardiac marker, cardiac troponin I (cTnI). This bioanalyte evaluation platform mainly comprised three external permanent magnets (PMs), one MI element, two peelable SiO film units and a microfluidic chip (MFC). The MI element was made of micro-electro-mechanical system (MEMS)-based multilayered [Ti (6 nm)/FeNi (100 nm)]/Cu (400 nm)/[Ti (6 nm)/FeNi (100 nm)] thin films and designed as meander structures with closed magnetic flux.

View Article and Find Full Text PDF

Portable sensor technologies are indispensable in personalized healthcare and environmental monitoring as they enable the continuous tracking of key analytes. Human sweat contains valuable physiological information, and previously developed noninvasive sweat-based sensors have effectively monitored single or multiple biomarkers. By successfully detecting biochemicals in sweat, portable sensors could also significantly broaden their application scope, encompassing non-biological fluids commonly encountered in daily life, such as mineral water.

View Article and Find Full Text PDF

Although various sensors specifically developed for target analytes are available, affordable biosensing solutions with broad applicability are limited. In this study, a cost-effective biosensor for detecting human epidermal growth factor receptor 2 (HER2) was developed using custom-made gold leaf electrodes (GLEs). A novel strategy for antibody immobilization on a gold surface, for the first time mediated by protein L and HER2-specific antibody trastuzumab, was examined using commercial screen-printed gold electrodes and GLEs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!