Optical molecular imaging is a promising technique and has been widely used in physiology, and pathology at cellular and molecular levels, which includes different modalities such as bioluminescence tomography, fluorescence molecular tomography and Cerenkov luminescence tomography. The inverse problem is ill-posed for the above modalities, which cause a nonunique solution. In this paper, we propose an effective reconstruction method based on the linearized Bregman iterative algorithm with sparse regularization (LBSR) for reconstruction. Considering the sparsity characteristics of the reconstructed sources, the sparsity can be regarded as a kind of a priori information and sparse regularization is incorporated, which can accurately locate the position of the source. The linearized Bregman iteration method is exploited to minimize the sparse regularization problem so as to further achieve fast and accurate reconstruction results. Experimental results in a numerical simulation and in vivo mouse demonstrate the effectiveness and potential of the proposed method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4570181 | PMC |
http://dx.doi.org/10.1155/2015/304191 | DOI Listing |
JASA Express Lett
January 2025
School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China.
This letter proposed a sparse deconvolution localization method (FFT-L1ML2) driven by non-convex L1-αL2 regularization that more closely approximates the ideal L0 norm. It is an alternative that explores the sparse structure of sound sources to enhance localization accuracy, while the original sparse deconvolution beamforming lacks a sufficiently accurate sparse description. An optimization solver composed of forward gradient descent and backward proximal operator is then developed for the FFT-L1ML2 model to reconstruct the beamforming map.
View Article and Find Full Text PDFJ Imaging
January 2025
Department of Precision Instrument, Tsinghua University, Beijing 100084, China.
The increasing reliance on deep neural network-based object detection models in various applications has raised significant security concerns due to their vulnerability to adversarial attacks. In physical 3D environments, existing adversarial attacks that target object detection (3D-AE) face significant challenges. These attacks often require large and dispersed modifications to objects, making them easily noticeable and reducing their effectiveness in real-world scenarios.
View Article and Find Full Text PDFBehav Res Methods
January 2025
Methods Center, Eberhard Karls University of Tübingen, Haußerstr. 11, 72076, Tübingen, Germany.
Due to the increased availability of intensive longitudinal data, researchers have been able to specify increasingly complex dynamic latent variable models. However, these models present challenges related to overfitting, hierarchical features, non-linearity, and sample size requirements. There are further limitations to be addressed regarding the finite sample performance of priors, including bias, accuracy, and type I error inflation.
View Article and Find Full Text PDFAdv Model Simul Eng Sci
January 2025
Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zürich, Zürich, 8092 Switzerland.
We extend (EUCLID Efficient Unsupervised Constitutive Law Identification and Discovery)-a data-driven framework for automated material model discovery-to pressure-sensitive plasticity models, encompassing arbitrarily shaped yield surfaces with convexity constraints and non-associated flow rules. The method only requires full-field displacement and boundary force data from one single experiment and delivers constitutive laws as interpretable mathematical expressions. We construct a material model library for pressure-sensitive plasticity models with non-associated flow rules in four steps: (1) a Fourier series describes an arbitrary yield surface shape in the deviatoric stress plane; (2) a pressure-sensitive term in the yield function defines the shape of the shear failure surface and determines plastic deformation under tension; (3) a compression cap term determines plastic deformation under compression; (4) a non-associated flow rule may be adopted to avoid the excessive dilatancy induced by plastic deformations.
View Article and Find Full Text PDFMethods
January 2025
School of Computer Science, Qufu Normal University, Rizhao 276826, China.
Brain imaging genetics aims to explore the association between genetic factors such as single nucleotide polymorphisms (SNPs) and brain imaging quantitative traits (QTs). However, most existing methods do not consider the nonlinear correlations between genotypic and phenotypic data, as well as potential higher-order relationships among subjects when identifying bi-multivariate associations. In this paper, a novel method called deep hyper-Laplacian regularized self-representation learning based structured association analysis (DHRSAA) is proposed which can learn genotype-phenotype associations and obtain relevant biomarkers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!