A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Theoretical and experimental studies on the performances of barbital-imprinted systems. | LitMetric

By using density functional theory, we studied the interaction process between barbital and 2-vinyl-4,6-diamino-1,3,5-triazine in acetonitrile at 333 K. Barbital and 2-vinyl-4,6-diamino-1,3,5-triazine were used as the template and functional monomer, respectively. The molecularly imprinted polymer microspheres containing barbital and 2-vinyl-4,6-diamino-1,3,5-triazine were synthesized through precipitation polymerization. After removing the template molecule barbital, the average diameter of the obtained molecularly imprinted polymers was 1.45 μm. By optimizing the molar ratio of barbital and the 2-vinyl-4,6-diamino-1,3,5-triazine, the resulting molecularly imprinted polymers showed the highest adsorption for the barbital. The analysis of the Scatchard plot revealed that the dissociation constant (Kd ) and apparent maximum adsorption quantity (Qmax ) of the molecularly imprinted polymers were 30.69 mg/L and 8.68 mg/g, respectively. The study of selective adsorption showed that molecularly imprinted polymers exhibited higher selectivity for barbtital than that for 1,3-dimethyl barbituric acid and pentobarbital. Herein, the studies can provide theoretical and experimental references for the barbital-imprinted system.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.201500891DOI Listing

Publication Analysis

Top Keywords

molecularly imprinted
20
barbital 2-vinyl-46-diamino-135-triazine
16
imprinted polymers
16
theoretical experimental
8
barbital
6
molecularly
5
imprinted
5
experimental studies
4
studies performances
4
performances barbital-imprinted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!