Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The densities of food retailers, alcohol outlets, physical activity facilities, and medical facilities have been associated with diet, physical activity, and management of medical conditions. Most of the research, however, has relied on cross-sectional studies. In this paper, we assess methodological issues raised by a data source that is increasingly used to characterize change in the local business environment: the National Establishment Time Series (NETS) dataset.
Discussion: Longitudinal data, such as NETS, offer opportunities to assess how differential access to resources impacts population health, to consider correlations among multiple environmental influences across the life course, and to gain a better understanding of their interactions and cumulative health effects. Longitudinal data also introduce new data management, geoprocessing, and business categorization challenges. Examining geocoding accuracy and categorization over 21 years of data in 23 counties surrounding New York City (NY, USA), we find that health-related business environments change considerably over time. We note that re-geocoding data may improve spatial precision, particularly in early years. Our intent with this paper is to make future public health applications of NETS data more efficient, since the size and complexity of the data can be difficult to exploit fully within its 2-year data-licensing period. Further, standardized approaches to NETS and other "big data" will facilitate the veracity and comparability of results across studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4588464 | PMC |
http://dx.doi.org/10.1186/s13104-015-1482-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!