Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aim: To identify genomic variants in the EGFR pathway and in cytokines predisposing to skin toxicity from EGFR inhibitors.
Patients & Methods: In 126 patients with cancer and EGFR inhibitor therapy skin toxicity was quantified and EGFR and inflammatory pathway genes were analyzed by deep sequencing.
Results: We found 1437 SNPs in the 382-kb target region. Three SNPs in EGFR intron 1 were found exclusively in patients without skin rash. Another EGFR intron 23 SNP was associated with skin rash, overall survival and IL8 plasma concentrations. Moreover, carriers of the PIK3R1 326I variant were predisposed to skin rash and better survival.
Conclusion: Comprehensive pathway-based resequencing revealed some new but only moderately strong genomic predictors of skin toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2217/pgs.15.97 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!