The present study was designed to highlight the impact of seed priming with polyethylene glycol on physiological and molecular mechanism of two cultivars of Oryza sativa L. under different levels of zinc oxide nanorods (0, 250, 500 and 750 mg L(-1)). Plant growth parameters were significantly increased in seed priming with 30% PEG under nano-ZnO stress in both cultivars. Whereas, this increase was more prominent in cultivar Qian You No. 1 as compared to cultivar Zhu Liang You 06. Significant increase in photosynthetic pigment with PEG priming under stress. Antioxidant enzymes activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) as well as malondialdehyde (MDA) contents were significantly reduced with PEG priming under nano-ZnO stress. Gene expression analysis also suggested that expression of APXa, APXb, CATa, CATb, CATc, SOD1, SOD2 and SOD3 genes were down regulated with PEG priming as compared to non-primed seeds under stress. The ultrastructural analysis showed that leaf mesophyll and root cells were significantly damaged under nano-ZnO stress in both cultivars but the damage was prominent in Zhu Liang You 06. However, seed priming with PEG significantly alleviate the toxic effects of nano-ZnO stress and improved the cell structures of leaf and roots in both cultivars.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4588511 | PMC |
http://dx.doi.org/10.1038/srep14278 | DOI Listing |
Environ Sci Pollut Res Int
October 2024
Faculty of Science, Department of Biology, University of Zagreb, 10000, Zagreb, Croatia.
The toxicity of nano-sized ZnO particles (nZnO) was evaluated and compared to that of their micro-sized counterparts (mZnO) using an integrative approach to investigate the mechanism of toxicity, utilizing duckweed (Lemna minor) as plant model. Following 7 days of exposure to nZnO or mZnO (2.5, 5, 25, and 50 mg L) growth rate, photosynthesis, oxidative stress, and genotoxicity parameters have been determined in duckweed.
View Article and Find Full Text PDFSalinity negatively impacts crop production by affecting physiological and biochemical processes in plants. This study investigates the effectiveness of Nano-ZnO (NZn), proline (PA), Nano-TiO (NTi), Nano-SiO (NSi)), and biochar inoculated with (OSBS) in enhancing wheat tolerance to salinity stress. Pot experiments were conducted under saline conditions with varying rates of biochar and foliar applications.
View Article and Find Full Text PDFEnviron Pollut
November 2024
Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China. Electronic address:
The effects of co-occurrent pollutants on antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs) have raised attentions. However, how the different realistic exposure scenarios determining the effects of nanomaterials (NMs) on ARGs, was still unknown. Herein, the effects of NMs on ARGs under two realistic scenarios was investigated by short-term and long-term exposure modes.
View Article and Find Full Text PDFSci Rep
July 2024
Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt.
Bulk zinc oxide (ZnO-BPs) and its nanoparticles (ZnO-NPs) are frequently used in various products for humans. Helisoma duryi embryos can serve as effective model organisms for studying the toxicity of NPs. This study aimed to compare the teratogenic potency of ZnO-BPs and ZnO NPs in the embryonic stages of H.
View Article and Find Full Text PDFPlant Physiol Biochem
June 2024
Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India.
The consistently increasing use of zinc oxide nanoparticles (ZnONPs) in crop optimization practices and their persistence in agro-environment necessitate expounding their influence on sustainable agro-environment. Attempts have been made to understand nanoparticle-plant beneficial bacteria (PBB)- plant interactions; the knowledge of toxic impact of nanomaterials on soil-PBB-vegetable systems and alleviating nanotoxicity using PBB is scarce and inconsistent. This study aims at bio-fabrication of ZnONPs from Rosa indica petal extracts and investigates the impact of PBB on growth and biochemical responses of biofertilized eggplants exposed to phyto-synthesized nano-ZnO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!