A series of cobalt(ii) complexes of a highly electron-withdrawing amido ligand, [N(C6F5)(C6H3Pr(i)2-2,6)](-) (L), were synthesized and structurally characterized. Mononuclear [CoL(Cl)(TMEDA)] (3) and heterobimetallic [CoL2(μ-Cl)Li(THF)3] (4) were obtained by direct metathetical reactions of anhydrous CoCl2 with one molar equivalent of [LiL(TMEDA)] (1) (TMEDA = Me2NCH2CH2NMe2) and [LiL(THF)3] (2), respectively. Complex 3 underwent facile ligand substitution reactions with LiMe and NaN3, yielding the corresponding mixed-ligand complexes [CoL(X)(TMEDA)] (X = Me 5, N36). Treatment of 3 with NaOMe led to the heterobimetallic complex [CoL2(μ-OMe)Na(TMEDA)] (7). The solid-state structures of complexes 1-7 were established by X-ray diffraction analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5dt00796h | DOI Listing |
Nat Commun
January 2025
Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden.
One of the key advantages of perovskite light-emitting diodes (PeLEDs) is their potential to achieve high performance at much higher current densities compared to conventional solution-processed emitters. However, state-of-the-art PeLEDs have not yet reached this potential, often suffering from severe current-efficiency roll-off under intensive electrical excitations. Here, we demonstrate bright PeLEDs, with a peak radiance of 2409 W sr m and negligible current-efficiency roll-off, maintaining high external quantum efficiency over 20% even at current densities as high as 2270 mA cm.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan.
Nitroarenes are highly versatile building blocks in organic synthesis, playing a pivotal role in various reactions. Common transformations involving nitroarenes include nucleophilic aromatic substitution (SAr) reactions, where the nitro group functions both as a potent electron-withdrawing group that activates the aromatic ring and as a leaving group facilitating the substitution. Additionally, the direct transformation of nitro groups, such as reduction-driven syntheses of amines and carboxylic acids, as well as -substitution SAr reactions, have been extensively explored.
View Article and Find Full Text PDFRSC Adv
January 2025
Institute of Polymer and Dye Technology, Lodz University of Technology Stefanowskiego 16 Lodz 90537 Poland.
This study investigates the structure-property relationships of a series of phenylhydrazones bearing various electron-donating and electron-withdrawing substituents, such as methoxy, dimethylamino, morpholinyl, hydroxyl, chloro, bromo, and nitro groups. The compounds were synthesized, and their structures were characterized using single-crystal X-ray diffraction, powder X-ray diffraction, FTIR spectroscopy, NMR spectroscopy, and DSC. Three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy and UV-Vis spectroscopy were employed to elucidate the complex interplay between the molecular skeleton, substituents, and the resulting photophysical properties.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue, Shimane, 690-8504, Japan.
Paddlewheel-type diruthenium(II,II) complexes are paramagnetic with two unpaired electrons ( = 1) and can be utilized as versatile building blocks for higher-order structures, such as supramolecular complexes, coordination polymers, and metal-organic frameworks, although they are generally highly air-sensitive. In this study, we developed an air-stable paddlewheel-type diruthenium(II,II) complex with two electron-withdrawing 1,8-naphthyridine-2-carboxylate (npc) ligands, [Ru(μ-npc)(OCMe)] (1). The two acetate ligands in 1 can be replaced by other carboxylate ligands; the solvothermal reactions of 1 with benzoic acid (HOCPh) yields the heteroleptic [Ru(μ-npc)(OCPh)] (2), whereas its reaction with 1,8-naphthyridine-2-carboxylic acid (Hnpc) produces the homoleptic [Ru(μ-npc)(η-npc)] (3).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States.
The development of catalytic methods for the synthesis of enantiopure saturated heterocycles has been a long-standing challenge in asymmetric catalysis. We describe the first highly enantioselective palladium-catalyzed βC(sp)-H arylation and olefination of lactams for the preparation of various chiral N-heterocycles bearing quaternary carbon centers. The presence of strongly electron-withdrawing groups on the chiral bifunctional MPAThio ligand is crucial to the reactivity of weakly coordinating lactams.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!