Flow-induced focal adhesion remodeling mediated by local cytoskeletal stresses and reorganization.

Cell Adh Migr

a Department of Physiology and Biophysics ; SUNY-Buffalo , Buffalo , NY USA.

Published: September 2016

Cells respond to fluid shear stress through dynamic processes involving changes in actomyosin and other cytoskeletal stresses, remodeling of cell adhesions, and cytoskeleton reorganization. In this study we simultaneously measured focal adhesion dynamics and cytoskeletal stress and reorganization in MDCK cells under fluid shear stress. The measurements used co-expression of fluorescently labeled paxillin and force sensitive FRET probes of α-actinin. A shear stress of 0.74 dyn/cm(2) for 3 hours caused redistribution of cytoskeletal tension and significant focal adhesion remodeling. The fate of focal adhesions is determined by the stress state and stability of the linked actin stress fibers. In the interior of the cell, the mature focal adhesions disassembled within 35-40 min under flow and stress fibers disintegrated. Near the cell periphery, the focal adhesions anchoring the stress fibers perpendicular to the cell periphery disassembled, while focal adhesions associated with peripheral fibers sustained. The diminishing focal adhesions are coupled with local cytoskeletal stress release and actin stress fiber disassembly whereas sustaining peripheral focal adhesions are coupled with an increase in stress and enhancement of actin bundles. The results show that flow induced formation of peripheral actin bundles provides a favorable environment for focal adhesion remodeling along the cell periphery. Under such condition, new FAs were observed along the cell edge under flow. Our results suggest that the remodeling of FAs in epithelial cells under flow is orchestrated by actin cytoskeletal stress redistribution and structural reorganization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4955960PMC
http://dx.doi.org/10.1080/19336918.2015.1089379DOI Listing

Publication Analysis

Top Keywords

focal adhesions
24
focal adhesion
16
adhesion remodeling
12
stress
12
shear stress
12
cytoskeletal stress
12
stress fibers
12
cell periphery
12
focal
9
local cytoskeletal
8

Similar Publications

G3BP1 ribonucleoprotein complexes regulate focal adhesion protein mobility and cell migration.

Cell Rep

January 2025

Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA. Electronic address:

The subcellular localization of mRNAs plays a pivotal role in biological processes, including cell migration. For instance, β-actin mRNA and its associated RNA-binding protein (RBP), ZBP1/IGF2BP1, are recruited to focal adhesions (FAs) to support localized β-actin synthesis, crucial for cell migration. However, whether other mRNAs and RBPs also localize at FAs remains unclear.

View Article and Find Full Text PDF

Redox regulation of focal adhesions.

Redox Biol

January 2025

Redox Biology Group, Danish Cancer Institute, 2100, Copenhagen, Denmark. Electronic address:

Focal adhesions (FAs), multi-protein complexes that link the extracellular matrix to the intracellular cytoskeleton, are key mediators of cell adhesion, migration, and proliferation. These dynamic structures act as mechanical sensors, transmitting stimuli from the extracellular to intracellular environment activating in this way signaling pathways and enabling cells to adapt to environmental changes. As such, FAs are critical for tissue organization and serve as hubs governing cell spatial arrangement within the organism.

View Article and Find Full Text PDF

Unlabelled: Pathogenic strains cause cholera using different mechanisms. O1 and O139 serogroup strains use the toxin-co-regulated pilus (TCP) and cholera toxin (CT) for intestinal colonization and to promote secretory diarrhea, while non-O1/non-O139 serogroup strains are typically non-toxigenic and use alternate virulence factors to cause a clinically similar disease. An O39 serogroup, TCP/CT-negative strain, named AM-19226, uses a type III secretion system (T3SS) to translocate more than 10 effector proteins into the host cell cytosol.

View Article and Find Full Text PDF

Mechanical forces are critical for virtually all fundamental biological processes, yet quantification of mechanical forces at the molecular scale remains challenging. Here, we present a new strategy using calibrated coiled-coils as genetically encoded, compact, tunable, and modular mechano-sensors to substantially simplify force measurement , via diverse readouts (luminescence, fluorescence and analytical biochemistry) and instrumentation readily available in biology labs. We demonstrate the broad applicability and ease-of-use of these coiled-coil mechano-sensors by measuring forces during cytokinesis (formin Cdc12) and endocytosis (epsin Ent1) in yeast, force distributions in nematode axons (β-spectrin UNC-70), and forces transmitted to the nucleus (mini-nesprin-2G) and within focal adhesions (vinculin) in mammalian cells.

View Article and Find Full Text PDF

Background: Interfacial heterogeneity is widely explored to reveal molecular mechanisms of force-mediated pathways due to biased tension. However, the influence of cell density,, curvature, and interfacial heterogeneity on underlying pathways of mechanotransduction is obscure.

Methods: Polydimethylsiloxane (PDMS)-based stencils were micropatterned to prepare the micropores for cell culture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!