In alcohol-dependent (AD) patients, alcohol cues induce strong activations in brain areas associated with alcohol craving and relapse, such as the nucleus accumbens (NAc) and amygdala. However, little is known about the influence of depressive symptoms, which are common in AD patients, on the brain's reactivity to alcohol cues. The methylation state of the dopamine transporter gene (DAT) has been associated with alcohol dependence, craving and depression, but its influence on neural alcohol cue reactivity has not been tested. Here, we compared brain reactivity to alcohol cues in 38 AD patients and 17 healthy controls (HCs) using functional magnetic resonance imaging and assessed the influence of depressive symptoms and peripheral DAT methylation in these responses. We show that alcoholics with low Beck's Depression Inventory scores (n=29) had higher cue-induced reactivity in NAc and amygdala than those with mild/moderate depression scores (n=9), though subjective perception of craving was higher in those with mild/moderate depression scores. We corroborated a higher DAT methylation in AD patients than HCs, and showed higher DAT methylation in AD patients with mild/moderate than low depression scores. Within the AD cohort, higher methylation predicted craving and, at trend level (P=0.095), relapse 1 year after abstinence. Finally, we show that amygdala cue reactivity correlated with craving and DAT methylation only in AD patients with low depression scores. These findings suggest that depressive symptoms and DAT methylation are associated with alcohol craving and associated brain processes in alcohol dependence, which may have important consequences for treatment. Moreover, peripheral DAT methylation may be a clinically relevant biomarker in AD patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5545640PMC
http://dx.doi.org/10.1038/tp.2015.141DOI Listing

Publication Analysis

Top Keywords

dat methylation
28
depressive symptoms
16
alcohol cues
16
depression scores
16
peripheral dat
12
reactivity alcohol
12
associated alcohol
12
methylation patients
12
methylation
9
alcohol
9

Similar Publications

Background And Purpose: Slow-acting biogenic amines, such as dopamine, are known to modulate fast neurotransmitters e.g. glutamate.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by the loss of nigrostriatal dopaminergic neurons and the presence of Lewy bodies (LB), intraneuronal inclusions mainly composed of α-synuclein (α-Syn) fibrils. Compelling evidence supports that, in PD brains, synapses are the sites where neurodegeneration initiates several years before the manifestation of motor symptoms. Furthermore, the amount of α-Syn deposited at synaptic terminals is several orders greater than that constituting LB.

View Article and Find Full Text PDF

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated adult zebrafish as a model for Parkinson's Disease.

Neurosci Lett

November 2024

Department of Bioengineering, Clemson University, Clemson, SC, USA; Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA. Electronic address:

Dopamine (DA) is a catecholamine neurotransmitter that works to regulate cognitive functions. Patients affected by Parkinson's Disease (PD) experience a loss of dopaminergic neurons and downregulated neural DA production. This leads to cognitive and physical decline that is the hallmark of PD for which no cure currently exists.

View Article and Find Full Text PDF

One new compound, methyl 3-((1-((2-carbamoylphenyl)amino)-1-oxopropan-2-yl)amino)-3-oxopropanoate (1), along with 9 known secondary metabolites (2-10) were isolated and elucidated chemical structures from the methanol extract of the marine-derived fungus Penicillium chrysogenum VH17. Subsequent bioassays showed the antimicrobial and cytotoxic potential of the isolated compounds. All compounds 1-10 displayed antimicrobial effects against at least one tested reference microorganism with MIC values ranging from 32 to 256 µg mL-1.

View Article and Find Full Text PDF

The gut microbiota plays a crucial role in neural development and progression of neural disorders like Parkinson's disease (PD). Probiotics have been suggested to impact neurodegenerative diseases via gut-brain axis. This study aims to investigate the therapeutic potential of Lacticaseibacillus rhamnosus E9, a high exopolysaccharide producer, on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced mouse model of PD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!