Background: The phenotype of chondrocyte is easy to be lost when expanded in vitro by a process defined "dedifferentiation". Traditional growth factors such as transforming growth factor (TGF-β1) are effective in preventing of dedifferentiation, but high costs and loss of activity limited their use. It is of significance to find substitutes which can reduce dedifferentiation and preserve chondrocytes phenotype to ensure sufficient differentiated cells for further study.

Methods: We synthesized new type of sulfonamido-based gallates named ZXHA-C and investigated its effect on primary articular chondrocytes of rats. After preliminary screening by cytotoxicity test, ZXHA-C of 1.06 × 10-8, 1.06 × 10-7 and 1.06 × 10-6M were chosen for further studies. Cell proliferation, morphology, viability, GAG synthesis and cartilage specific gene expression were detected. Also the effects of ZXHA-C on Wnt/β-catenin signaling pathway were investigated.

Results: ZXHA-C could significantly promote chondrocytes growth. And it could enhance ECM synthesis by up-regulating expression levels of cartilage specific markers like aggrecan, collagen II and Sox9. Expression of collagen I which marked chondrocytes dedifferentiation was also significantly down-regulated after treated by ZXHA-C. Further exploration of the molecular mechanism indicated that ZXHA-C activated the Wnt/β-catenin signal pathway in chondrocytes, as evidenced by up-regulated gene expression of β-catenin, Wnt-4, cyclin D1 and Frizzled-2 and decreased glycogen synthase kinase 3β (GSK-3β). Among the various concentrations, ZXHA-C of 1.06 × 10-7 M showed the best performance, which was close to positive control (group with TGF-β1).

Conclusion: ZXHA-C might be potential a novel agent for the maintenances of chondrocytes phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000430243DOI Listing

Publication Analysis

Top Keywords

articular chondrocytes
8
chondrocytes phenotype
8
zxha-c
8
zxha-c 106
8
106 10-7
8
cartilage specific
8
gene expression
8
chondrocytes
7
stimulating newly
4
newly synthesized
4

Similar Publications

LIPUS activated piezoelectric pPLLA/SrSiO composite scaffold promotes osteochondral regeneration through P2RX1 mediated Ca signaling pathway.

Biomaterials

January 2025

Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China. Electronic address:

Addressing the concurrent repair of cartilage and subchondral bone presents a significant challenge yet is crucial for the effective treatment of severe joint injuries. This study introduces a novel biodegradable composite scaffold, integrating piezoelectric poly-l-lactic acid (pPLLA) with strontium-enriched silicate bioceramic (SrSiO). This innovative scaffold continually releases bioactive Sr and SiO ions while generating an electrical charge under low-intensity pulsed ultrasound (LIPUS) stimulation, a clinically recognized method.

View Article and Find Full Text PDF

Decellularized cartilage tissue bioink formulation for osteochondral graft development.

Biomed Mater

January 2025

Department of Orthopaedic Surgery, University of Connecticut, Chemical, Materials & Biomolecular Engineering MC-3711, ARB7-E7018, 263 Farmington Avenue, Farmington, CT 06032, USA, Storrs, Connecticut, 06269, UNITED STATES.

Articular cartilage and osteochondral defect repair and regeneration presents significant challenges to the field of tissue engineering (TE). TE and regenerative medicine strategies utilizing natural and synthetic-based engineered scaffolds have shown potential for repair, however, they face limitations in replicating the intricate native microenvironment and structure to achieve optimal regenerative capacity and functional recovery. Herein, we report the development of a cartilage extracellular matrix (ECM) as a printable biomaterial for tissue regeneration.

View Article and Find Full Text PDF

Arctiin alleviates the progression of osteoarthritis by regulating the cholesterol metabolic pathway.

Sci Rep

January 2025

Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology; Guangzhou First People's Hospital, Guangzhou Medical University, 1 Panfu Road, Yuexiu District, Guangzhou, 510180, China.

Osteoarthritis (OA) is a multi-factorial degenerative joint disease with unclear pathogenesis. Conservative treatments, primarily aimed at pain relief, fail to halt disease progression. Metabolic syndrome has recently been implicated in OA pathogenesis, underscoring the need for novel therapeutic strategies.

View Article and Find Full Text PDF

Neuronal guidance factor Sema3A inhibits neurite ingrowth and prevents chondrocyte hypertrophy in the degeneration of knee cartilage in mice, monkeys and humans.

Bone Res

January 2025

The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.

Osteoarthritis (OA) is a degenerative joint disease accompanied with the loss of cartilage and consequent nociceptive symptoms. Normal articular cartilage maintains at aneural state. Neuron guidance factor Semaphorin 3A (Sema3A) is a membrane-associated secreted protein with chemorepulsive properties for axons.

View Article and Find Full Text PDF

Hydrogel Doped with Sinomenine-CeO Nanoparticles for Sustained Intra-articular Therapy in Knee Osteoarthritis.

J Drug Target

January 2025

Department of Clinical Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210000, China.

Intra-articular injection has emerged as a promising approach for treating knee osteoarthritis (OA), showing notable efficacy and potential. However, the risk of side effects remains a concern with the commonly used steroid therapies in clinical practice. Here, we developed an intra-articular injectable hydrogel drug depot (SMN-CeO@G) for sustained OA treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!