Central venous catheters (CVCs), placed in the superior vena cava (SVC) for hemodialysis or chemotherapy, are routinely filled while not in use with heparin, an anticoagulant, to maintain patency and prevent thrombus formation at the catheter tip. The heparin-locking procedure, however, places the patient at risk for systemic bleeding, as heparin is known to leak from the catheter into the blood stream. We provide evidence from detailed in vitro experiments that shows the driving mechanism behind heparin leakage to be convective-diffusive transport due to the pulsatile flow surrounding the catheter. This novel mechanism is supported by experimental planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV) measurements of flow velocity and heparin transport from a CVC placed inside a model SVC inside a pulsatile flow loop. The results predict an initial, fast (<10 s), convection-dominated phase that rapidly depletes the concentration of heparin in the near-tip region, the region of the catheter with side holes. This is followed by a slow, diffusion-limited phase inside the catheter lumen, where the concentration is still high, that is insufficient at replenishing the lost heparin concentration in the near-tip region. The results presented here, which are consistent with previous in vivo estimates of 24 hour leakage rates, predict that the concentration of heparin in the near-tip region is essentially zero for the majority of the interdialytic phase, rendering the heparin locking procedure ineffective.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4850915PMC
http://dx.doi.org/10.1097/MAT.0000000000000280DOI Listing

Publication Analysis

Top Keywords

central venous
8
venous catheters
8
superior vena
8
vena cava
8
pulsatile flow
8
heparin
5
convective leakage
4
leakage heparin
4
heparin locking
4
locking central
4

Similar Publications

Deep vein thrombosis (DVT) in patients undergoing endoscopic endonasal surgery remains underexplored, despite its potential impact on postoperative recovery. This study aimed to develop and validate a predictive nomogram for assessing the risk of lower-limb DVT in such patients without chemoprophylaxis. A retrospective analysis was conducted on 935 patients with postoperative lower-limb vein ultrasonography.

View Article and Find Full Text PDF

Ultrasonographic assessment of the diameters of various veins and their indices are among the most applied diagnostic tools for evaluating fluid responsiveness in clinical practice. Despite their widespread use, there is no definitive answer on which is preferable. Our study aimed to investigate the diagnostic accuracy of different venous diameters and their indices to assess fluid responsiveness.

View Article and Find Full Text PDF

Hepatic encephalopathy (HE) in dogs is a metabolic disorder of the central nervous system that occurs secondarily to liver dysfunctions, whether due to acquired or congenital causes. A portosystemic shunt is the presence of abnormal communications between the hepatic vessels (portal and suprahepatic veins). As a result of this, the blood brought from the digestive tract through the portal vein bypasses the liver, and the unmetabolized components of the portal bloodstream enter directly into systemic circulation, causing clinical symptoms of metabolic encephalopathy (HE).

View Article and Find Full Text PDF

The regeneration of endothelial cells (ECs) lining arteries, veins, and large lymphatic vessels plays an important role in vascular pathology. To understand the mechanisms of atherogenesis, it is important to determine what happens during endothelial regeneration. A comparison of these processes in the above-mentioned vessels reveals both similarities and some significant differences.

View Article and Find Full Text PDF

Acquired reactive perforating dermatosis (ARPD) is characterized by its onset after the age of 18 years, umbilicated papules or nodules with a central keratotic plug, and the presence of necrotic collagen tissue within an epithelial crater. ARPD is strongly associated with systemic diseases such as diabetes mellitus (DM) and chronic renal failure, which may contribute to ARPD through factors including microcirculatory disturbances and the deposition of metabolic byproducts, including advanced glycation end-products and calcium. Here, we report a case of ARPD that improved following DM treatment and catheter-based interventions for peripheral artery disease (PAD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!