Rationale: Autologous and allogeneic hematopoietic stem cell transplant (HSCT) patients are susceptible to pulmonary infections, including bacterial pathogens, even after hematopoietic reconstitution. We previously reported that murine bone marrow transplant (BMT) neutrophils overexpress cyclooxygenase-2, overproduce prostaglandin E2 (PGE2), and exhibit defective intracellular bacterial killing. Neutrophil extracellular traps (NETs) are DNA structures that capture and kill extracellular bacteria and other pathogens.

Objectives: To determine whether NETosis was defective after transplant and if so, whether this was regulated by PGE2 signaling.

Methods: Neutrophils isolated from mice and humans (both control and HSCT subjects) were analyzed for NETosis in response to various stimuli in the presence or absence of PGE2 signaling modifiers.

Measurements And Main Results: NETs were visualized by immunofluorescence or quantified by Sytox Green fluorescence. Treatment of BMT or HSCT neutrophils with phorbol 12-myristate 13-acetate or rapamycin resulted in reduced NET formation relative to control cells. NET formation after BMT was rescued both in vitro and in vivo with cyclooxygenase inhibitors. Additionally, the EP2 receptor antagonist (PF-04418948) or the EP4 antagonist (AE3-208) restored NET formation in neutrophils isolated from BMT mice or HSCT patients. Exogenous PGE2 treatment limited NETosis of neutrophils collected from normal human volunteers and naive mice in an exchange protein activated by cAMP- and protein kinase A-dependent manner.

Conclusions: Our results suggest blockade of the PGE2-EP2 or EP4 signaling pathway restores NETosis after transplantation. Furthermore, these data provide the first description of a physiologic inhibitor of NETosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731709PMC
http://dx.doi.org/10.1164/rccm.201501-0161OCDOI Listing

Publication Analysis

Top Keywords

net formation
12
neutrophil extracellular
8
stem cell
8
cell transplant
8
hsct patients
8
neutrophils isolated
8
neutrophils
5
netosis
5
inhibition neutrophil
4
extracellular trap
4

Similar Publications

Associations of fat, bone, and muscle indices with disease severity in patients with obstructive sleep apnea hypopnea syndrome.

Sleep Breath

January 2025

Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No.1 Da Hua Road, Dong Dan, Dongcheng District, Beijing, 100730, PR China.

Purpose: To investigate the relationship between obstructive sleep apnea hypopnea syndrome (OSAHS) severity and fat, bone, and muscle indices.

Methods: This study included 102 patients with OSAHS and retrospectively reviewed their physical examination data. All patients underwent polysomnography, body composition analysis, dual-energy X-ray absorptiometry, computed tomography (CT) and blood test.

View Article and Find Full Text PDF

Tumour DNA methylation markers associated with breast cancer survival: a replication study.

Breast Cancer Res

January 2025

Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia.

Background: Tumour DNA methylation has been investigated as a potential marker for breast cancer survival, but findings often lack replication across studies.

Methods: This study sought to replicate previously reported associations for individual CpG sites and multi-CpG signatures using an Australian sample of 425 women with breast cancer from the Melbourne Collaborative Cohort Study (MCCS). Candidate methylation sites (N = 22) and signatures (N = 3) potentially associated with breast cancer survival were identified from five prior studies that used The Cancer Genome Atlas (TCGA) methylation dataset, which shares key characteristics with the MCCS: comparable sample size, tissue type (formalin-fixed paraffin-embedded; FFPE), technology (Illumina HumanMethylation450 array), and participant characteristics (age, ancestry, and disease subtype and severity).

View Article and Find Full Text PDF

Molecular foundations for shear-induced dynamics of natural organic matter.

Sci Total Environ

January 2025

Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN, United States. Electronic address:

The overall objective of the present work was to quantify how shear, coupled with varying salt concentration, affected the particle size distribution and relaxation/aggregation behavior for various organic sources of nonliving natural organic matter (NNOM) in surface water. NNOM has been implicated as a conditioning agent leading to the formation of biofilms such as algae. NNOM is also a responsible in surface waters for facilitated transport of a variety of anthropogenic pollutants.

View Article and Find Full Text PDF

Cerebral aneurysms (CA) are a serious condition characterized by the bulging of a blood vessel in the brain, which can lead to rupture and life-threatening bleeding. The pathophysiology of CA involves complex processes, particularly inflammation and macrophage infiltration. Phoenixin-14 (PNX-14) is a neuropeptide with diverse biological effects, including roles in reproduction, energy homeostasis, and inflammation.

View Article and Find Full Text PDF

Continuously flowing wastewater-treatment processes can be configured for biological and physical selection to form and retain large biological aggregates (LBAs), along with suspended biomass that contains ordinary biological flocs and biomass that has detached from the LBAs. Suspended biomass and LBAs have different solids residence times (SRTs) and mass-transport resistances. Here, mathematical sub-models that describe metabolic processes, a 1-D biofilm, and spherical carriers that can migrate throughout a wastewater-treatment process were combined to simulate a full-scale demonstration train having anaerobic, anoxic, and oxic zones, as well as side-stream enhanced biological phosphorus removal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!