Strategy for accurate liver intervention by an optical tracking system.

Biomed Opt Express

Department of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong, China.

Published: September 2015

Image-guided navigation for radiofrequency ablation of liver tumors requires the accurate guidance of needle insertion into a tumor target. The main challenge of image-guided navigation for radiofrequency ablation of liver tumors is the occurrence of liver deformations caused by respiratory motion. This study reports a strategy of real-time automatic registration to track custom fiducial markers glued onto the surface of a patient's abdomen to find the respiratory phase, in which the static preoperative CT is performed. Custom fiducial markers are designed. Real-time automatic registration method consists of the automatic localization of custom fiducial markers in the patient and image spaces. The fiducial registration error is calculated in real time and indicates if the current respiratory phase corresponds to the phase of the static preoperative CT. To demonstrate the feasibility of the proposed strategy, a liver simulator is constructed and two volunteers are involved in the preliminary experiments. An ex-vivo porcine liver model is employed to further verify the strategy for liver intervention. Experimental results demonstrate that real-time automatic registration method is rapid, accurate, and feasible for capturing the respiratory phase from which the static preoperative CT anatomical model is generated by tracking the movement of the skin-adhered custom fiducial markers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4574657PMC
http://dx.doi.org/10.1364/BOE.6.003287DOI Listing

Publication Analysis

Top Keywords

custom fiducial
16
fiducial markers
16
real-time automatic
12
automatic registration
12
respiratory phase
12
phase static
12
static preoperative
12
liver intervention
8
image-guided navigation
8
navigation radiofrequency
8

Similar Publications

An Open-source Python Tool for Traction Force Microscopy on Micropatterned Substrates.

Bio Protoc

January 2025

Laboratoire Interdisciplinaire de Physique (LIPhy), Université Grenoble Alpes, CNRS, Grenoble, France.

Cell-generated forces play a critical role in driving and regulating complex biological processes, such as cell migration and division and cell and tissue morphogenesis in development and disease. Traction force microscopy (TFM) is an established technique developed in the field of mechanobiology used to quantify cellular forces exerted on soft substrates and internal mechanical tissue stresses. TFM measures cell-generated traction forces in 2D or 3D environments with varying mechanical and biochemical properties.

View Article and Find Full Text PDF

Objectives: Radiotherapy manages pancreatic cancer in various settings; however, the proximity of gastrointestinal (GI) luminal organs-at-risk (OAR) poses challenges to conventional radiotherapy. Proton beam therapy (PBT) may reduce toxicities compared to photon therapy. This consensus statement summarizes PBT's safe and optimal delivery for pancreatic tumors.

View Article and Find Full Text PDF

Honey bee foraging is a complex behavior because it involves tens of thousands of organisms making decisions about where to collect pollen and nectar based on the quality of resources and the distance to flowers. Studying this aspect of their biology is possible through direct observations but the large number of individuals involved in this behavior makes the implementation of technologies ideal to scale up this type of study. Consequently, there is a need for instruments that can facilitate accurate assessments of honey bee foraging at the colony level.

View Article and Find Full Text PDF

The primary goal of this pilot study was to evaluate, via 3D analysis, the scan body precision of an intraoral digital scan utilizing a custom multifunctional scan body compared to that of digitized stone models fabricated from a conventional open tray impression in the fully edentulous maxilla and mandible. The secondary goal of this study was to showcase a method for utilizing the scan body library to generate a fixed fiducial marker for the cross-mount of an edentulous arch. Comparative analysis was performed as a case-control study.

View Article and Find Full Text PDF

High dose-rate brachytherapy is a treatment technique for gynecologic cancers where intracavitary applicators are placed within the patient's pelvic cavity. To ensure accurate radiation delivery, localization of the applicator at the time of insertion is vital. This study proposes a novel method for acquiring, registering, and fusing three-dimensional (3D) trans-abdominal and 3D trans-rectal ultrasound (US) images for visualization of the pelvic anatomy and applicators during gynecologic brachytherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!