The role of neuronal nitric oxide synthase (nNOS) in the central mechanism of neuropathic pain and long-term potentiation (LTP) of peripheral afferents remains obscure. The current study investigated the effect of intrathecal application of 7-nitroindazole (7-NI), a selective nNOS inhibitor (8.15 µg/5µl), on mechanical allodynia on day 14 after L5 spinal nerve transection. Furthermore, using in vivo single unit extracellular recording, we examined the effect of 7-NI on the induction of LTP of Aδ- and C-fiber-evoked responses. We have demonstrated that 7-NI attenuates nerve-injury-evoked mechanical allodynia. Additionally, our electrophysiological study has shown that the spinal administration of 7-NI significantly inhibits the induction of the LTP of Aδ- and C-fiber-evoked responses on day 14 after neuropathy. These data suggest that activation of nNOS may be crucial for the induction of the spinal LTP of Aδ- and C-fiber-evoked responses following peripheral nerve damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464162PMC

Publication Analysis

Top Keywords

ltp aδ-
12
aδ- c-fiber-evoked
12
c-fiber-evoked responses
12
induction spinal
8
mechanical allodynia
8
induction ltp
8
induction
4
spinal long-term
4
long-term synaptic
4
synaptic potentiation
4

Similar Publications

Dynamic control of protein degradation via the ubiquitin proteasome system (UPS) is thought to play a crucial role in neuronal function and synaptic plasticity. The proteasome subunit Rpt6, an AAA ATPase subunit of the 19S regulatory particle (RP), has emerged as an important site for regulation of 26S proteasome function in neurons. Phosphorylation of Rpt6 on serine 120 (S120) can stimulate the catalytic rate of substrate degradation by the 26S proteasome and this site is targeted by the plasticity-related kinase Ca/calmodulin-dependent kinase II (CaMKII), making it an attractive candidate for regulation of proteasome function in neurons.

View Article and Find Full Text PDF

The Tripeptide RER Mimics Secreted Amyloid Precursor Protein-Alpha in Upregulating LTP.

Front Cell Neurosci

October 2019

Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand.

Secreted amyloid precursor protein-alpha (sAPPα), generated by enzymatic processing of the APP, possesses a range of neurotrophic and neuroprotective properties and plays a critical role in the molecular mechanisms of memory and learning. One of the key active regions of sAPPα is the central APP domain (E2) that contains within it the tripeptide sequence, RER. This sequence is exposed on the surface of a coiled coil substructure of E2.

View Article and Find Full Text PDF

The synaptic insertion or removal of AMPA receptors (AMPAR) plays critical roles in the regulation of synaptic activity reflected in the expression of long-term potentiation (LTP) and long-term depression (LTD). The cellular events underlying this important process in learning and memory are still being revealed. Here we describe and characterize the AAA+ ATPase Thorase, which regulates the expression of surface AMPAR.

View Article and Find Full Text PDF

Analysis of local helix geometry in three B-DNA decamers and eight dodecamers.

J Mol Biol

January 1991

Department of Chemistry and Biochemistry, University of California, Los Angeles 90024.

Local variations in B-DNA helix structure are compared among three decamers and eight dodecamers, which contain examples of all ten base-pair step types. All pairwise combinations of helix parameters are compared by linear regression analysis, in a search for internal relationships as well as correlations with base sequence. The primary conclusions are: (1) Three-center hydrogen bonds between base-pairs occur frequently in the major groove at C-C, C-A, A-A and A-C steps, but are less convincing at C-C and C-T steps in the minor groove.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!