Enhanced precipitation variability decreases grass- and increases shrub-productivity.

Proc Natl Acad Sci U S A

School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501; School of Sustainability, Arizona State University, Tempe, AZ, 85287-4501.

Published: October 2015

Although projections of precipitation change indicate increases in variability, most studies of impacts of climate change on ecosystems focused on effects of changes in amount of precipitation, overlooking precipitation variability effects, especially at the interannual scale. Here, we present results from a 6-y field experiment, where we applied sequences of wet and dry years, increasing interannual precipitation coefficient of variation while maintaining a precipitation amount constant. Increased precipitation variability significantly reduced ecosystem primary production. Dominant plant-functional types showed opposite responses: perennial-grass productivity decreased by 81%, whereas shrub productivity increased by 67%. This pattern was explained by different nonlinear responses to precipitation. Grass productivity presented a saturating response to precipitation where dry years had a larger negative effect than the positive effects of wet years. In contrast, shrubs showed an increasing response to precipitation that resulted in an increase in average productivity with increasing precipitation variability. In addition, the effects of precipitation variation increased through time. We argue that the differential responses of grasses and shrubs to precipitation variability and the amplification of this phenomenon through time result from contrasting root distributions of grasses and shrubs and competitive interactions among plant types, confirmed by structural equation analysis. Under drought conditions, grasses reduce their abundance and their ability to absorb water that then is transferred to deep soil layers that are exclusively explored by shrubs. Our work addresses an understudied dimension of climate change that might lead to widespread shrub encroachment reducing the provisioning of ecosystem services to society.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4611653PMC
http://dx.doi.org/10.1073/pnas.1506433112DOI Listing

Publication Analysis

Top Keywords

precipitation variability
20
precipitation
12
climate change
8
dry years
8
response precipitation
8
grasses shrubs
8
variability
6
enhanced precipitation
4
variability decreases
4
decreases grass-
4

Similar Publications

Three new hexagonal perovskites with CsMMRhCl (M = Na, Ag; M = Mn, Fe) stoichiometry have been synthesized from solution precipitation reactions. These air-stable compounds crystallize as triply cation-ordered variants of the 6H perovskite structure. This structure contains octahedra that share a common face to form MRhCl dimers that are arranged on a two-dimensional triangular network.

View Article and Find Full Text PDF

[Prediction of potential geographic distribution of in Yunnan Province using random forest and maximum entropy models].

Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi

December 2024

Yunnan Institute of Endemic Diseases Control and Prevention, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali, Yunnan 671000, China.

Objective: To predict the potential geographic distribution of in Yunnan Province using random forest (RF) and maximum entropy (MaxEnt) models, so as to provide insights into surveillance and control in Yunnan Province.

Methods: The snail survey data in Yunnan Province from 2015 to 2016 were collected and converted into snail distribution site data. Data of 22 environmental variables in Yunnan Province were collected, including twelve climate variables (annual potential evapotranspiration, annual mean ground surface temperature, annual precipitation, annual mean air pressure, annual mean relative humidity, annual sunshine duration, annual mean air temperature, annual mean wind speed, ≥ 0 ℃ annual accumulated temperature, ≥ 10 ℃ annual accumulated temperature, aridity and index of moisture), eight geographical variables (normalized difference vegetation index, landform type, land use type, altitude, soil type, soil textureclay content, soil texture-sand content and soil texture-silt content) and two population and economic variables (gross domestic product and population).

View Article and Find Full Text PDF

Grasslands cover approximately a third of the Earth's land surface and account for about a third of terrestrial carbon storage. Yet, we lack strong predictive models of grassland plant biomass, the primary source of carbon in grasslands. This lack of predictive ability may arise from the assumption of linear relationships between plant biomass and the environment and an underestimation of interactions of environmental variables.

View Article and Find Full Text PDF

Recent widespread reductions in body size across species have been linked to increasing temperatures; simultaneous increases in wing length relative to body size have been broadly observed but remain unexplained. Size and shape may change independently of one another, or these morphological shifts may be linked, with body size mediating or directly driving the degree to which shape changes. Using hierarchical Bayesian models and a morphological time series of 27 366 specimens from five North American migratory passerine bird species, we tested the roles that climate and body size have played in shifting wing length allometry over four decades.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!