The two carboxylation reactions performed by phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) are vital in the fixation of inorganic carbon for C4 plants. The abundance of PEPC is substantially elevated in C4 leaves, while the location of Rubisco is restricted to one of two chloroplast types. These differences compared with C3 leaves have been shown to result in convergent enzyme optimization in some C4 species. Investigation into the kinetic properties of PEPC and Rubisco from Kranz C4, single cell C4, and C3 species in Chenopodiaceae s. s. subfamily Suaedoideae showed that these major carboxylases in C4 Suaedoideae species lack the same mutations found in other C4 systems which have been examined; but still have similar convergent kinetic properties. Positive selection analysis on the N-terminus of PEPC identified residues 364 and 368 to be under positive selection with a posterior probability >0.99 using Bayes empirical Bayes. Compared with previous analyses on other C4 species, PEPC from C4 Suaedoideae species have different convergent amino acids that result in a higher K m for PEP and malate tolerance compared with C3 species. Kinetic analysis of Rubisco showed that C4 species have a higher catalytic efficiency of Rubisco (k catc in mol CO2 mol(-1) Rubisco active sites s(-1)), despite lacking convergent substitutions in the rbcL gene. The importance of kinetic changes to the two-carboxylation reactions in C4 leaves related to amino acid selection is discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765798 | PMC |
http://dx.doi.org/10.1093/jxb/erv431 | DOI Listing |
Mitochondrial DNA B Resour
October 2018
College of Life Sciences, Tarim University, Alaer, China.
belongs to Amaranthaceae and distributes in North Europe, Asia, and North America. It is a medicinal plant with diuretic, antispasmodic, carminative, antidiarrhoeic properties, and a candidate plant for cancer treatment. However, few studies focused on its phylogeny, and its taxonomic status is still controversial.
View Article and Find Full Text PDFJ Exp Bot
December 2015
School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
The two carboxylation reactions performed by phosphoenolpyruvate carboxylase (PEPC) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) are vital in the fixation of inorganic carbon for C4 plants. The abundance of PEPC is substantially elevated in C4 leaves, while the location of Rubisco is restricted to one of two chloroplast types. These differences compared with C3 leaves have been shown to result in convergent enzyme optimization in some C4 species.
View Article and Find Full Text PDFJ Exp Bot
July 2014
School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
In subfamily Suaedoideae, four independent gains of C4 photosynthesis are proposed, which includes two parallel origins of Kranz anatomy (sections Salsina and Schoberia) and two independent origins of single-cell C4 anatomy (Bienertia and Suaeda aralocaspica). Additional phylogenetic support for this hypothesis was generated from sequence data of the C-terminal portion of the phosphoenolpyruvate carboxylase (PEPC) gene used in C4 photosynthesis (ppc-1) in combination with previous sequence data. ppc-1 sequence was generated for 20 species in Suaedoideae and two outgroup Salsola species that included all types of C4 anatomies as well as two types of C3 anatomies.
View Article and Find Full Text PDFJ Exp Bot
May 2011
Laboratory of Anatomy and Morphology, V. L. Komarov Botanical Institute of Russian Academy of Sciences, Professor Popov Street 2, 197376, St Petersburg, Russia.
Genus Suaeda (family Chenopodiaceae, subfamily Suaedoideae) has two structural types of Kranz anatomy consisting of a single compound Kranz unit enclosing vascular tissue. One, represented by Suaeda taxifolia, has mesophyll (M) and bundle sheath (BS) cells distributed around the leaf periphery. The second, represented by Suaeda eltonica, has M and BS surrounding vascular bundles in the central plane.
View Article and Find Full Text PDFFunct Plant Biol
September 2009
School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
The objective of this study was to characterise photosynthesis in terrestrial non-Kranz (NK) C species, Bienertia sinuspersici Akhani and Suaeda aralocaspica (Bunge) Freitag & Schütze (formerly Borszczowia aralocaspica), compared with closely related Kranz type C Suaeda eltonica Iljin and Suaeda taxifolia Standley, and C species Suaeda heterophylla Bunge and Suaeda maritima Dumort in subfamily Suaedoideae (Chenopodiaceae). Traditional Kranz type C photosynthesis has several advantages over C photosynthesis under certain environmental conditions by suppressing photorespiration. The different photosynthetic types were evaluated under varying levels of CO and light at 25°C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!