Polycomb repressive complexes (PRC1 and PRC2) are epigenetic regulators that act in coordination to influence multiple cellular processes including pluripotency, differentiation, cancer and senescence. The role of PRCs in senescence can be mostly explained by their ability to repress the INK4/ARF locus. CBX7 is one of five mammalian orthologues of Drosophila Polycomb that forms part of PRC1. Despite the relevance of CBX7 for regulating senescence and pluripotency, we have a limited understanding of how the expression of CBX7 is regulated. Here we report that the miR-9 family of microRNAs (miRNAS) downregulates the expression of CBX7. In turn, CBX7 represses miR-9-1 and miR-9-2 as part of a regulatory negative feedback loop. The miR-9/CBX7 feedback loop is a regulatory module contributing to induction of the cyclin-dependent kinase inhibitor (CDKI) p16(INK4a) during senescence. The ability of the miR-9 family to regulate senescence could have implications for understanding the role of miR-9 in cancer and aging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4693451 | PMC |
http://dx.doi.org/10.1111/acel.12404 | DOI Listing |
Exp Hematol
November 2024
European Research Institute for Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen, The Netherlands; Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands. Electronic address:
The epigenome of leukemic cells is dysregulated, and genes required for cell cycle arrest and differentiation may become repressed, which contributes to the accumulation of undifferentiated malignant blood cells. Here, we show that the Polycomb group protein CBX7 can interact with H3K9 methyltransferases EHMT1/2 and SETDB1. We aimed to assess whether combined interfering with these H3K9 methyltransferases and CBX7 could derepress target genes and thereby induce growth arrest of leukemic cells.
View Article and Find Full Text PDFJ Inflamm Res
November 2024
Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.
Purpose: Prostate cancer (PCa) is seriously affecting men's health and quality of life. Existing studies indicate that PCa stem cells are responsible for promoting the growth and contributing to the high recurrence rate of PCa.
Methods: We retrieved and downloaded PCa-related datasets from both the GEO and TCGA database.
Cancer Metab
October 2024
Department of Spinal Surgery, The Fourth Hospital of Changsha, Changsha Hospital of Hunan Normal University, No.70 Lushan Road, Yuelu District, Changsha, 410006, Hunan, China.
EMBO Mol Med
November 2024
Institute of Biochemistry and Biology, Potsdam University, D-14476, Potsdam, Germany.
Cerebral cavernous malformations (CCMs) are anomalies of the cerebral vasculature. Loss of the CCM proteins CCM1/KRIT1, CCM2, or CCM3/PDCD10 trigger a MAPK-Krüppel-like factor 2 (KLF2) signaling cascade, which induces a pathophysiological pattern of gene expression. The downstream target genes that are activated by KLF2 are mostly unknown.
View Article and Find Full Text PDFCell Biochem Biophys
December 2024
Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, China.
Cervical cancer stands as the most frequently diagnosed malignancy affecting the female reproductive. The erythropoietin-producing hepatocyte (Eph) family tyrosine kinases play important roles in tumorigenesis and cancer aggression. However, the exact role of EPHB6 in cervical cancer remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!